Rings without infinite sets of noncentral orthogonal idempotents
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 207-221

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a ring without infinite sets of noncentral orthogonal idempotents. $A$ is an exchange ring if and only if all Pierce stalks of $A$ are semiperfect rings. All $A$-modules are $I_0$-modules if and only if either $A$ is a right semi-Artinian ring in which every proper right ideal is the intersection of maximal right ideals or $A/\operatorname{SI}(A_A)$ is an Artinian serial ring such that the square of the Jacobson radical of $A/\operatorname{SI}(A_A)$ is equal to zero.
@article{FPM_2008_14_2_a9,
     author = {A. A. Tuganbaev},
     title = {Rings without infinite sets of noncentral orthogonal idempotents},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {207--221},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a9/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings without infinite sets of noncentral orthogonal idempotents
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 207
EP  - 221
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a9/
LA  - ru
ID  - FPM_2008_14_2_a9
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings without infinite sets of noncentral orthogonal idempotents
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 207-221
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a9/
%G ru
%F FPM_2008_14_2_a9
A. A. Tuganbaev. Rings without infinite sets of noncentral orthogonal idempotents. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 207-221. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a9/