The non-Platonic and non-Archimedean noncomposite polyhedra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 179-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

If a convex polyhedron with regular faces cannot be divided by any plane into two polyhedra with regular faces, then it is said to be noncomposite. We indicate the exact coordinates of the vertices of noncomposite polyhedra that are neither regular (Platonic), nor semiregular (Archimedean), nor their parts cut by no more than three planes. Such a description allows one to obtain a short proof of the existence of each of the eight such polyhedra (denoted by $M_8$, $M_{20}$$M_{25}$, $M_{28}$) and to obtain other applications.
@article{FPM_2008_14_2_a8,
     author = {A. V. Timofeenko},
     title = {The {non-Platonic} and {non-Archimedean} noncomposite polyhedra},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {179--205},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a8/}
}
TY  - JOUR
AU  - A. V. Timofeenko
TI  - The non-Platonic and non-Archimedean noncomposite polyhedra
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 179
EP  - 205
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a8/
LA  - ru
ID  - FPM_2008_14_2_a8
ER  - 
%0 Journal Article
%A A. V. Timofeenko
%T The non-Platonic and non-Archimedean noncomposite polyhedra
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 179-205
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a8/
%G ru
%F FPM_2008_14_2_a8
A. V. Timofeenko. The non-Platonic and non-Archimedean noncomposite polyhedra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 179-205. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a8/

[1] Brënsted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988 | MR

[2] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauch. sem. LOMI, 2, Nauka, L., 1967, 5–221 | MR | Zbl

[3] Yu. V. Prokhorov (red.), Matematicheskii entsiklopedicheskii slovar, Sovetskaya entsiklopediya, M., 1988 | MR | Zbl

[4] Prokhorov G., Kolbeev V., Zhelnov K., Ledenëv M., Matematicheskii paket Maple V Release 4: Rukovodstvo polzovatelya, http: www.exponenta.ru/soft/maple/kaluga/1.asp

[5] Sabitov I. Kh., “Obobschënnaya formula Gerona–Tartalya i nekotorye eë sledstviya”, Mat. sb., 189:10 (1998), 105–134 | MR | Zbl

[6] Timofeenko A. V., “Kompyuternye modeli grupp i mnogogrannikov”, Izbrannye doklady mezhdunar. konf. po matematike i mekhanike (Tomskii gos. un-t, 16–18 sentyabrya 2003 g.), Izd-vo TGU, Tomsk, 2003, 31–38

[7] Timofeenko A. V., “K teorii vypuklykh mnogogrannikov s pravilnymi granyami”, Tr. mezhdunar. shkoly-seminara po geometrii i analizu pamyati N. V. Efimova (Abrau-Dyurso, 5–11 sentyabrya 2004 g.), TsVVR, Rostov-na-Donu, 2004, 58–60

[8] Timofeenko A. V., Golovanova O. V., Timofeev I. V., “Krasota formuly voploschaetsya v krasotu prostranstvennoi formy. I”, Vestnik Krasnoyarskoi gos. arkhitekturno-stroitelnoi akademii, Vyp. 8, Sb. nauch. tr. Vserossiiskoi nauch.-prakt. konf. “Sibir – novye tekhnologii v arkhitekture, stroitelstve i zhilischno-kommunalnom khozyaistve”, 2005, 287–293

[9] Timofeenko A. V., Golovanova O. V., Timofeev I. V., “Krasota formuly voploschaetsya v krasotu prostranstvennoi formy. II”, Vestnik Krasnoyarskoi gos. arkhitekturno-stroitelnoi akademii, Vyp. 8, Sb. nauch. tr. Vserossiiskoi nauch.-prakt. konf. “Sibir – novye tekhnologii v arkhitekture, stroitelstve i zhilischno-kommunalnom khozyaistve”, 2005, 293–297

[10] Timofeenko A. V., Stukalov S. G., “Orbity nekotorykh grupp v trëkhmernom prostranstve, smodelirovannye sistemami kompyuternoi algebry”, Tez. dokl. mezhdunar. konf. po matematike i mekhanike (Tomskii gos. un-t, 16–18 sentyabrya 2003 g.), Izd-vo TGU, Tomsk, 2003, 58

[11] GAP, http: www.gap-system.org/~gap

[12] Hume A., Exact Descriptions of Regular and Semi-Regular Polyhedra and Their Duals, Computer Science Technical Report, 130, AT T Bell Laboratories, Murray Hill, 1986

[13] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl

[14] Weisstein E. W., Johnson solid, http: mathworld.wolfram.com/JohnsonSolid.html