Parallel displacements on the surface of a~projective space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 129-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to studies of parallel displacements of directions and planes in linear and nonlinear (in narrow sense) connections along lines on a surface of a projective space considered as the point manifold and the manifold of tangential planes. Parallel displacements are described by means of covariant differentials of quasitensors in the case of nonlinear connections and projective-covariant differentials in linear connections. The work concerns to researches in the area of differential geometry. The research is based on an application of the G. F. Laptev's method of defining a connection in a principal fiber bundle and his method of continuations and scopes, which generalizes the moving frame method and the Cartan's method of exterior forms; the research depends on calculation of exterior differential forms.
@article{FPM_2008_14_2_a7,
     author = {K. V. Polyakova},
     title = {Parallel displacements on the surface of a~projective space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--177},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a7/}
}
TY  - JOUR
AU  - K. V. Polyakova
TI  - Parallel displacements on the surface of a~projective space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 129
EP  - 177
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a7/
LA  - ru
ID  - FPM_2008_14_2_a7
ER  - 
%0 Journal Article
%A K. V. Polyakova
%T Parallel displacements on the surface of a~projective space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 129-177
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a7/
%G ru
%F FPM_2008_14_2_a7
K. V. Polyakova. Parallel displacements on the surface of a~projective space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 129-177. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a7/

[1] Evtushik L. E., “Differentsialnye svyaznosti i infinitezimalnye preobrazovaniya prodolzhennoi psevdogruppy”, Trudy geometricheskogo seminara, 2, VINITI, M., 1963, 119–150.

[2] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Itogi nauki i tekhniki. Ser. Problemy geometrii, 9, VINITI, M., 1979 | MR | Zbl

[3] Kartan E., “Prostranstva proektivnoi svyaznosti”, Tr. semin. po vekt. i tenz. analizu, 1937, no. 4, 160–173

[4] Kartan E., Rimanova geometriya v ortogonalnom repere, Izd-vo Mosk. un-ta, M., 1960 | MR

[5] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR

[6] Laptev G. F., “Differentsialnaya geometriya pogruzhënnykh mnogoobrazii”, Tr. MMO, 2, 1953, 275–383 | MR

[7] Laptev G. F., “Mnogoobraziya, pogruzhënnye v obobschënnye prostranstva”, Tr. 4-go Vsesoyuz. mat. s'ezda (1961), T. 2, L., 1964, 226–233 | MR | Zbl

[8] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Trudy geometricheskogo seminara, 1, VINITI, M., 1966, 139–189 | MR

[9] Lumiste Yu. G., “Odnorodnye rassloeniya so svyaznostyu i ikh pogruzheniya”, Trudy geometricheskogo seminara, 1, VINITI, M., 1966, 191–237 | MR

[10] Lumiste Yu. G., “Svyaznosti v odnorodnykh rassloeniyakh”, Mat. sb., 69(111):3 (1966), 434–469 | MR | Zbl

[11] Lumiste Yu. G., Chakmazyan A. V., “Podmnogoobraziya s parallelnym normalnym vektornym polem”, Izv. vyssh. uchebn. zaved. Matematika, 1974, no. 5, 148–157 | MR | Zbl

[12] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl

[13] Ostianu N. M., “Geometricheskikh ob'ektov teoriya”, Matematicheskaya entsiklopediya, T. 1, M., 1984, 937

[14] Polyakova K. V., “Parallelnye pereneseniya napravlenii vdol poverkhnosti proektivnogo prostranstva”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 27, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1996, 63–70

[15] Polyakova K. V., “Svyaznosti v rassloeniyakh, assotsiirovannykh s mnogoobraziem par kasatelnoi i soprikasayuscheisya ploskostei poverkhnosti”, Trudy geometricheskogo seminara, Vyp. 23, Mezhvuz. temat. sb. nauch. tr., Kazanskii gos. un-t, Kazan, 1997, 99–112 | MR

[16] Polyakova K. V., “Vyrozhdennye parallelnye pereneseniya na poverkhnosti proektivnogo prostranstva”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 29, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1999, 64–68

[17] Polyakova K. V., “O golonomnosti poverkhnosti proektivnogo prostranstva”, XXX nauch. konf. Kaliningr. un-ta, Tez. dokl. Chast 6, Kaliningrad, 1999, 7–8

[18] Polyakova K. V., “Spetsialnye osnascheniya Bortolotti i Kartana na poverkhnosti”, Materialy mezhdunar. konferentsii, posvyaschënnoi 90-letiyu so dnya rozhdeniya G. F. Lapteva, “Invariantnye metody issledovaniya na mnogoobraziyakh struktur geometrii, analiza i matematicheskoi fiziki”, Tez. dokl., M., 1999, 36–37

[19] Polyakova K. V., “Tri tipa svyaznostei na poverkhnosti proektivnogo prostranstva”, Materialy shkoly-konferentsii, posvyaschënnoi 130-letiyu so dnya rozhdeniya D. F. Egorova, “ Teoriya funktsii, eë prilozheniya i smezhnye voprosy”, Tez. dokl., Kazan, 1999, 179–180 | MR | Zbl

[20] Polyakova K. V., “Kasatelnaya lineinaya i koaffinnaya svyaznosti na poverkhnosti proektivnogo prostranstva”, Materialy nauch. semin. Kaliningr. gos. un-ta, Kaliningrad, 2000, 30–33

[21] Polyakova K. V., “Ponyatie protosvyaznosti na poverkhnosti proektivnogo prostranstva”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 31, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 2000, 58–65 | MR

[22] Polyakova K. V., “Tenzor parallelnosti”, Tr. mat. tsentra im. N. I. Lobachevskogo, T. 5, Kazan, 2000, 174 | MR | Zbl

[23] Polyakova K. V., “Indutsirovannye tsentroproektivnaya i lineinaya svyaznosti na poverkhnosti”, Tr. mat. tsentra im. N. I. Lobachevskogo, T. 12, Kazan, 2001, 52–53

[24] Polyakova K. V., “Tenzor parallelnosti i absolyutnye parallelnye pereneseniya”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 32, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 2001, 80–83 | MR

[25] Polyakova K. V., “Psevdosvyaznost kak spetsialnaya geometricheskaya svyaznost”, Tr. mat. tsentra im. N. I. Lobachevskogo, T. 18, Kazan, 2002, 71–72

[26] Polyakova K. V., “O sovpadenii geometricheskikh kharakteristik svyaznostei indutsirovannykh na poverkhnosti”, Sb. tr. Mezhdunar. geom. seminara im. G. F. Lapteva, Penza, 2004, 102–106

[27] Chakmazyan A. V., “Svyaznost v normalnykh rassloeniyakh normalizovannogo podmnogoobraziya $V_m$ v $P_n$”, Itogi nauki i tekhniki. Ser. Problemy geometrii, 10, VINITI, M., 1978, 55–74 | MR | Zbl

[28] Chakmazyan A. V., Normalnaya svyaznost v geometrii podmnogoobrazii, Erevan, 1990 | MR | Zbl

[29] Shevchenko Yu. I., “Ob osnaschenii mnogomernoi poverkhnosti proektivnogo prostranstva”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 8, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1977, 135–150

[30] Shevchenko Yu. I., “Parallelnye pereneseniya na poverkhnosti”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 10, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1979, 154–158 | MR

[31] Shevchenko Yu. I., “Geometricheskaya kharakteristika nekotorykh indutsirovannykh svyaznostei poverkhnosti”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 12, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1981, 126–130 | MR

[32] Shevchenko Yu. I., “Struktura osnascheniya mnogoobraziya lineinykh figur”, Tez. dokl. VI pribalt. geom. konf., Tallin, 1984, 137–138

[33] Shevchenko Yu. I., “Parallelnyi perenos figury v lineinoi kombinatsii svyaznosti”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 18, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1987, 115–120 | MR

[34] Shevchenko Yu. I., “Ob osnovnoi zadache proektivno-differentsialnoi geometrii poverkhnosti”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 20, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1989, 122–128 | MR

[35] Shevchenko Yu. I., “Svyaznost v prodolzhenii glavnogo rassloeniya”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 22, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1991, 117–127 | MR

[36] Shevchenko Yu. I., “Osnascheniya podmnogoobrazii golonomnogo i negolonomnogo differentsiruemykh mnogoobrazii”, Differentsialnaya geometriya mnogoobrazii figur, Vyp. 26, Mezhvuz. temat. sb. nauch. tr., Kaliningr. gos. un-t, Kaliningrad, 1995, 113–126

[37] Shevchenko Yu. I., Osnascheniya golonomnogo i negolonomnogo gladkikh mnogoobrazii, Kaliningrad, 1998

[38] Bortolotti E., “Connessioni nelle varietà luogo di spazi”, Rend. Semin. Fac. Sci. Univ. Cagliari, 1933, no. 3, 81–89 | Zbl

[39] Golab St., Tensor calculus, Warszava, 1974 | MR

[40] Polyakova K. V., “Parallel displacements along manifold of osculating planes of a surface”, Int. Congress of Mathematicians, Abstracts of Short Communications and Poster Sessions, Berlin, 1998, 78–79

[41] Polyakova K. V., “Pseudoconnection as special geometric connection”, Dokl. mezhdunar. mat. semin. k 140-letiyu so dnya rozhdeniya Davida Gilberta iz Kënigsberga i 25-letiyu matematicheskogo fakulteta, Kaliningrad, 2002, 138–144 | MR

[42] Polyakova K. V., “Contraction structure of linear connection on a surface of projective space”, Tr. ob'edinënnoi mezhdunar. nauch. konf. “Novaya geometriya prirody”, Kazan, 2003, 173–175

[43] Polyakova K. V., “On projective-covariant differential of geometrical object”, Tezisy mezhdunar. nauch. konf., priurochennoi k 200-letiyu so dnya rozhdeniya K. G. Yakobi i 750-letiyu so dnya osnovaniya g. Kaliningrada (Kënigsberga), Kaliningrad, 2005, 43–45