An algorithm for finding normal solutions of consistent systems of linear equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 121-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical algorithm for finding the normal solution of consistent systems of linear algebraic equations of incomplete rank of rows. Results of a comparison of a numerical realization of the proposed algorithm with some known subroutines are given.
@article{FPM_2008_14_2_a6,
     author = {M. V. Lezhnev},
     title = {An algorithm for finding normal solutions of consistent systems of linear equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/}
}
TY  - JOUR
AU  - M. V. Lezhnev
TI  - An algorithm for finding normal solutions of consistent systems of linear equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 121
EP  - 128
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/
LA  - ru
ID  - FPM_2008_14_2_a6
ER  - 
%0 Journal Article
%A M. V. Lezhnev
%T An algorithm for finding normal solutions of consistent systems of linear equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 121-128
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/
%G ru
%F FPM_2008_14_2_a6
M. V. Lezhnev. An algorithm for finding normal solutions of consistent systems of linear equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 121-128. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/

[1] Bartenev O. V., Fortran dlya professionalov. Matematicheskaya biblioteka IMSL, Ch. 1, Dialog-MIFI, M., 2000

[2] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[3] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[4] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001

[5] Lezhnëv M. V., “Minimalnoe reshenie sistem lineinykh uravnenii polnogo strochnogo ranga”, Sb. tr. X Vserossiiskoi shkoly-seminara “Sovremennye problemy matematicheskogo modelirovaniya”, Izd-vo RGU, Rostov-na-Donu, 2004, 151–155

[6] Faddeeva V. N., Kolotilina L. Yu., Vychislitelnye metody lineinoi algebry. Nabor matrits dlya testirovaniya, Vyp. I–III, LOMI AN SSSR, Leningrad, 1982

[7] Lezhnev M. V., “A diagonalization method for solution of rectangular systems of linear equations”, Lectures of Instructors and Abstracts of Young Scientists of the Int. Summer School “Iterative Methods and Matrix Computations”, RSU, Rostov-on-Don, 2002, 431–433