Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_2_a6, author = {M. V. Lezhnev}, title = {An algorithm for finding normal solutions of consistent systems of linear equations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {121--128}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/} }
TY - JOUR AU - M. V. Lezhnev TI - An algorithm for finding normal solutions of consistent systems of linear equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 121 EP - 128 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/ LA - ru ID - FPM_2008_14_2_a6 ER -
M. V. Lezhnev. An algorithm for finding normal solutions of consistent systems of linear equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 121-128. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/
[1] Bartenev O. V., Fortran dlya professionalov. Matematicheskaya biblioteka IMSL, Ch. 1, Dialog-MIFI, M., 2000
[2] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[3] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999
[4] Demmel Dzh., Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Mir, M., 2001
[5] Lezhnëv M. V., “Minimalnoe reshenie sistem lineinykh uravnenii polnogo strochnogo ranga”, Sb. tr. X Vserossiiskoi shkoly-seminara “Sovremennye problemy matematicheskogo modelirovaniya”, Izd-vo RGU, Rostov-na-Donu, 2004, 151–155
[6] Faddeeva V. N., Kolotilina L. Yu., Vychislitelnye metody lineinoi algebry. Nabor matrits dlya testirovaniya, Vyp. I–III, LOMI AN SSSR, Leningrad, 1982
[7] Lezhnev M. V., “A diagonalization method for solution of rectangular systems of linear equations”, Lectures of Instructors and Abstracts of Young Scientists of the Int. Summer School “Iterative Methods and Matrix Computations”, RSU, Rostov-on-Don, 2002, 431–433