An algorithm for finding normal solutions of consistent systems of linear equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 121-128

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical algorithm for finding the normal solution of consistent systems of linear algebraic equations of incomplete rank of rows. Results of a comparison of a numerical realization of the proposed algorithm with some known subroutines are given.
@article{FPM_2008_14_2_a6,
     author = {M. V. Lezhnev},
     title = {An algorithm for finding normal solutions of consistent systems of linear equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/}
}
TY  - JOUR
AU  - M. V. Lezhnev
TI  - An algorithm for finding normal solutions of consistent systems of linear equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 121
EP  - 128
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/
LA  - ru
ID  - FPM_2008_14_2_a6
ER  - 
%0 Journal Article
%A M. V. Lezhnev
%T An algorithm for finding normal solutions of consistent systems of linear equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 121-128
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/
%G ru
%F FPM_2008_14_2_a6
M. V. Lezhnev. An algorithm for finding normal solutions of consistent systems of linear equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 2, pp. 121-128. http://geodesic.mathdoc.fr/item/FPM_2008_14_2_a6/