Lebesgue measure in infinite dimension as an infinite-dimensional distribution
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 127-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Physicists deal with the formal Lebesgue measure on the space of smooth maps from one manifold to another. The aim of the present paper is to give two definitions of this measure as a distribution: using functional spaces of noncommutative geometry and those of the white noise theory.
@article{FPM_2007_13_8_a8,
     author = {R. L\'eandre},
     title = {Lebesgue measure in infinite dimension as an infinite-dimensional distribution},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/}
}
TY  - JOUR
AU  - R. Léandre
TI  - Lebesgue measure in infinite dimension as an infinite-dimensional distribution
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 127
EP  - 132
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/
LA  - ru
ID  - FPM_2007_13_8_a8
ER  - 
%0 Journal Article
%A R. Léandre
%T Lebesgue measure in infinite dimension as an infinite-dimensional distribution
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 127-132
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/
%G ru
%F FPM_2007_13_8_a8
R. Léandre. Lebesgue measure in infinite dimension as an infinite-dimensional distribution. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 127-132. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/

[1] Accardi L., Bozejko M., “Interacting Fock spaces and Gaussianization of probability measures”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1 (1998), 663–670 | DOI | MR | Zbl

[2] Accardi L., Nahmi M., “Interacting Fock spaces and orthogonal polynomials in several variables”, Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroads, eds. N. Obata, T. Matsui, A. Hora, World Scientific, 2003, 192–205 | MR

[3] Albeverio S., “Wiener and Feynman path integrals and their applications”, Proc. Norbert Wiener Centenary Congress (East Lansing, MI, USA, November 27–December 3, 1994), Proc. Symp. Appl. Math., 52, eds. V. Mandrekar, P. R. Masani, Amer. Math. Soc., Providence, 1997, 163–194 | MR | Zbl

[4] Berezansky Y. M., Kondratiev Y. O., Spectral Methods in Infinite-Dimensional Analysis, Vols. 1, 2, Kluwer Academic, 1995 | MR

[5] Cartier P., Dewitt-Morette C., Book in preparation

[6] Connes A., “Entire cyclic cohomology of Banach algebras and characters of $\theta$-summable Fredholm modules”, $K$-Theory, 1 (1980), 519–548 | DOI | MR

[7] Gannoun R., Hachaichi R., Ouerdiane H., Rezgui A., “Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle”, J. Funct. Anal., 171:1 (2000), 1–14 | DOI | MR | Zbl

[8] Getzler E., Cyclic homology and the path integral of the Dirac operator, Preprint, 1988

[9] Getzler E., Szenes A., “On the Chern character of a theta-summable Fredholm module”, J. Funct. Anal., 84 (1989), 343–357 | DOI | MR | Zbl

[10] Gilkey P., Invariance Theory, the Heat Equation and the Atiyah–Singer Theorem, CRC Press, 1995 | MR | Zbl

[11] Grosche C., Steiner F., Handbook on Feynman Path Integrals, Springer, 1998 | MR | Zbl

[12] Hida T., Analysis of Brownian Functionals, Carleton Math. Lect. Notes, 13, Carleton Univ., Ottawa, 1975 | MR | Zbl

[13] Hida T., Kuo H. H., Potthoff J., Streit L., White Noise: An Infinite Dimensional Calculus, Kluwer Academic, 1993 | MR | Zbl

[14] Jaffe A., “Quantum harmonic analysis and geometric invariants”, Adv. Math., 143 (1999), 1–110 | DOI | MR | Zbl

[15] Jaffe A., Lesniewski A., Osterwalder K., “Quantum $K$-theory. The Chern character”, Comm. Math. Phys., 118 (1988), 1–14 | DOI | MR | Zbl

[16] Johnson G., Lapidus M., The Feynman Integral and Feynman Operational Calculus, Oxford Univ. Press, 2000 | MR

[17] Jones J. D. S., Léandre R., “$L^p$ Chen forms on loop spaces”, Stochastic Analysis, eds. M. Barlow, N. Bingham, Cambridge Univ. Press, 1991, 104–162 | MR

[18] Kleinert H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific, 2004 | MR

[19] Khandrekar D. C., Streit L., “Constructing the Feynman integrand”, Ann. Physics, 1 (1992), 49–60 | DOI | MR

[20] Léandre R., “Cohomologie de Bismut–Nualart–Pardoux et cohomologie de Hochschild entiere”, Sém. Probabilités XXX in Honour of P. A. Meyer and J. Neveu, Lect. Notes Math., 1626, eds. J. Azéma, M. Emery, M. Yor, Springer, 1996, 68–100 | MR

[21] Léandre R., “Theory of distribution in the sense of Connes–Hida and Feynman path integral on a manifold”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 505–517 | DOI | MR | Zbl

[22] Léandre R., “White noise analysis, filtering equation and the index theorem for families”, Infinite-Dimensional Harmonic Analysis, eds. H. Heyer, H. Saitô (to appear)

[23] Léandre R., Ouerdiane H., Connes–Hida Calculus and Bismut–Quillen superconnections, Preprint | MR

[24] Nest R., Tsygan B., “Algebraic index for families”, Adv. Math., 113 (1995), 151–205 | DOI | MR | Zbl

[25] Obata N., White Noise Calculus and Fock Space, Lect. Notes Math., 1577, Springer, 1994 | MR | Zbl

[26] Ouerdiane H., “Fonctionnelles analytiques avec conditions de croissance et application a l'analyse Gaussienne”, Jpn. J. Math., 20 (1994), 187–198 | MR | Zbl

[27] Roepstorff G., Path Integral Approach to Quantum Physics. An Introduction, Springer, 1994 | MR | Zbl

[28] Schulman L., Techniques and Application of Path Integration, Wiley, 1981 | MR | Zbl