Lebesgue measure in infinite dimension as an infinite-dimensional distribution
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 127-132

Voir la notice de l'article provenant de la source Math-Net.Ru

Physicists deal with the formal Lebesgue measure on the space of smooth maps from one manifold to another. The aim of the present paper is to give two definitions of this measure as a distribution: using functional spaces of noncommutative geometry and those of the white noise theory.
@article{FPM_2007_13_8_a8,
     author = {R. L\'eandre},
     title = {Lebesgue measure in infinite dimension as an infinite-dimensional distribution},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/}
}
TY  - JOUR
AU  - R. Léandre
TI  - Lebesgue measure in infinite dimension as an infinite-dimensional distribution
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 127
EP  - 132
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/
LA  - ru
ID  - FPM_2007_13_8_a8
ER  - 
%0 Journal Article
%A R. Léandre
%T Lebesgue measure in infinite dimension as an infinite-dimensional distribution
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 127-132
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/
%G ru
%F FPM_2007_13_8_a8
R. Léandre. Lebesgue measure in infinite dimension as an infinite-dimensional distribution. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 127-132. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/