Lebesgue measure in infinite dimension as an infinite-dimensional distribution
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 127-132
Voir la notice de l'article provenant de la source Math-Net.Ru
Physicists deal with the formal Lebesgue measure on the space of smooth maps from one manifold to another. The aim of the present paper is to give two definitions of this measure as a distribution: using functional spaces of noncommutative geometry and those of the white noise theory.
@article{FPM_2007_13_8_a8,
author = {R. L\'eandre},
title = {Lebesgue measure in infinite dimension as an infinite-dimensional distribution},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {127--132},
publisher = {mathdoc},
volume = {13},
number = {8},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/}
}
TY - JOUR AU - R. Léandre TI - Lebesgue measure in infinite dimension as an infinite-dimensional distribution JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 127 EP - 132 VL - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/ LA - ru ID - FPM_2007_13_8_a8 ER -
R. Léandre. Lebesgue measure in infinite dimension as an infinite-dimensional distribution. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 127-132. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a8/