$D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 105-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we introduce the concept of a filtered $E_\infty$-algebra, construct spectral sequences for such algebras, and apply them to multiplicative cohomological spectral sequences of bundles. The existence of the structure of $D_\infty$-differential $A_\infty$-algebra in cohomological spectral sequences of bundles over fields is proved and the initial multiplicative component of this structure at the second term of the spectral sequence is calculated.
@article{FPM_2007_13_8_a7,
     author = {S. V. Lapin},
     title = {$D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--125},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 105
EP  - 125
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/
LA  - ru
ID  - FPM_2007_13_8_a7
ER  - 
%0 Journal Article
%A S. V. Lapin
%T $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 105-125
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/
%G ru
%F FPM_2007_13_8_a7
S. V. Lapin. $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 105-125. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/

[1] Lapin S. V., “Differentsialnye vozmuscheniya i $D_\infty$-differentsialnye moduli”, Mat. sb., 192:11 (2001), 55–76 | MR | Zbl

[2] Lapin S. V., “$D_\infty$-differentsialnye $A_\infty$-algebry i spektralnye posledovatelnosti”, Mat. sb., 193:1 (2002), 119–142 | MR | Zbl

[3] Lapin S. V., “$(DA)_\infty$-moduli nad $(DA)_\infty$-algebrami i spektralnye posledovatelnosti”, Izv. RAN. Ser. mat., 66:3 (2002), 103–130 | MR | Zbl

[4] Lapin S. V., “$D_\infty$-differentsialy i $A_\infty$-struktury v spektralnykh posledovatelnostyakh”, Sovrem. mat. i ee pril., 1 (2003), 56–91 | MR

[5] Smirnov V. A., “O kotsepnom komplekse topologicheskogo prostranstva”, Mat. sb., 115:1 (1981), 146–158 | MR | Zbl

[6] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. mat., 49:6 (1985), 1302–1321 | MR | Zbl

[7] Smirnov V. A., “Gomologii $B$-konstruktsii i ko-$B$-konstruktsii”, Izv. RAN. Ser. mat., 58:4 (1994), 80–96 | MR | Zbl

[8] Smirnov V. A., “Algebry Li nad operadami i ikh primenenie v teorii gomotopii”, Izv. RAN. Ser. mat., 62:3 (1998), 121–154 | MR | Zbl

[9] Smirnov V. A., Simplitsialnye i operadnye metody v algebraicheskoi topologii, Faktorial, M., 2002

[10] Gugenheim V. K. A. M., Lambe L. A., “Perturbation theory in differential homological algebra. I”, Illinois J. Math., 33:4 (1989), 566–582 | MR | Zbl

[11] Gugenheim V. K. A. M., Lambe L. A., Stasheff J. D., “Algebraic aspects of Chen's twisting cochain”, Illinois J. Math., 34:2 (1990), 485–502 | MR | Zbl

[12] Gugenheim V. K. A. M., Lambe L. A., Stasheff J. D., “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[13] Gugenheim V. K. A. M., Stasheff J. D., “On perturbations and $A_\infty$-structures”, Bull. Belg. Math. Soc. Simon Stevin., 38 (1986), 237–246 | MR | Zbl

[14] Lambe L. A., Stasheff J. D., “Applications of perturbation theory to iterated fibrations”, Manuscripta Math., 58 (1987), 363–376 | DOI | MR | Zbl

[15] Leray J., “L'anneau spectral et l'anneau filtre d'homologie d'une espace localement compact et, d'une application continue”, J. Math. Pures Appl. (9), 29 (1950), 1–139 | MR | Zbl

[16] May J. P., Simplicial Objects in Algebraic Topology, Van Nostrand, Princeton, 1967 | MR

[17] Serre J. P., “Homologie singulière des espaces fibrés. Applications”, Ann. Math., 54:2 (1951), 425–505 | DOI | MR | Zbl