$D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 105-125
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we introduce the concept of a filtered $E_\infty$-algebra, construct spectral sequences for such algebras, and apply them to multiplicative cohomological spectral sequences of bundles. The existence of the structure of $D_\infty$-differential $A_\infty$-algebra in cohomological spectral sequences of bundles over fields is proved and the initial multiplicative component of this structure at the second term of the spectral sequence is calculated.
@article{FPM_2007_13_8_a7,
author = {S. V. Lapin},
title = {$D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {105--125},
publisher = {mathdoc},
volume = {13},
number = {8},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/}
}
TY - JOUR AU - S. V. Lapin TI - $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 105 EP - 125 VL - 13 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/ LA - ru ID - FPM_2007_13_8_a7 ER -
%0 Journal Article %A S. V. Lapin %T $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules %J Fundamentalʹnaâ i prikladnaâ matematika %D 2007 %P 105-125 %V 13 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/ %G ru %F FPM_2007_13_8_a7
S. V. Lapin. $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 105-125. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/