$D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 105-125

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we introduce the concept of a filtered $E_\infty$-algebra, construct spectral sequences for such algebras, and apply them to multiplicative cohomological spectral sequences of bundles. The existence of the structure of $D_\infty$-differential $A_\infty$-algebra in cohomological spectral sequences of bundles over fields is proved and the initial multiplicative component of this structure at the second term of the spectral sequence is calculated.
@article{FPM_2007_13_8_a7,
     author = {S. V. Lapin},
     title = {$D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--125},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 105
EP  - 125
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/
LA  - ru
ID  - FPM_2007_13_8_a7
ER  - 
%0 Journal Article
%A S. V. Lapin
%T $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 105-125
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/
%G ru
%F FPM_2007_13_8_a7
S. V. Lapin. $D_\infty$-differential $E_\infty$-algebras and spectral sequences of $D_\infty$-differential modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 105-125. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a7/