Increasing polyharmonic functions and Cauchy problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 99-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that polyharmonic functions in a bounded domain are determined, under some estimates on their growth, by their values on the boundary.
@article{FPM_2007_13_8_a6,
     author = {N. Yu. Zhuraeva},
     title = {Increasing polyharmonic functions and {Cauchy} problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {99--103},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a6/}
}
TY  - JOUR
AU  - N. Yu. Zhuraeva
TI  - Increasing polyharmonic functions and Cauchy problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 99
EP  - 103
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a6/
LA  - ru
ID  - FPM_2007_13_8_a6
ER  - 
%0 Journal Article
%A N. Yu. Zhuraeva
%T Increasing polyharmonic functions and Cauchy problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 99-103
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a6/
%G ru
%F FPM_2007_13_8_a6
N. Yu. Zhuraeva. Increasing polyharmonic functions and Cauchy problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 99-103. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a6/

[2] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Novosibirsk, 1962 | MR

[3] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[4] Yarmukhamedov Sh. Ya., “Zadacha Koshi dlya poligarmonicheskogo uravneniya”, Dokl. RAN., 388:2 (2003), 162–165 | MR | Zbl