Unitarily covariant maps in approximately finite-dimensional $C^*$-algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 213-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider maps defined on a real space $A_\mathrm{sa}$ of all self-adjoint elements of a $C^*$-algebra $A$ commuting with the conjugation by unitaries: $F(u^*au)=u^*F(a)u$ for any $a\in A_\mathrm{sa}$, $u\in\mathcal U(A)$. In the case where $A$ is a full matrix algebra, there is a functional realization of these maps (in terms of multivariable functions) and analytical properties of these maps can be expressed in terms of corresponding functions. In the present work, these results are generalized to the class of uniformly hyperfinite $C^*$-algebras and to the algebra of all compact operators in a Hilbert space.
@article{FPM_2007_13_8_a12,
     author = {T. Shulman},
     title = {Unitarily covariant maps in approximately finite-dimensional $C^*$-algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--227},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a12/}
}
TY  - JOUR
AU  - T. Shulman
TI  - Unitarily covariant maps in approximately finite-dimensional $C^*$-algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 213
EP  - 227
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a12/
LA  - ru
ID  - FPM_2007_13_8_a12
ER  - 
%0 Journal Article
%A T. Shulman
%T Unitarily covariant maps in approximately finite-dimensional $C^*$-algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 213-227
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a12/
%G ru
%F FPM_2007_13_8_a12
T. Shulman. Unitarily covariant maps in approximately finite-dimensional $C^*$-algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 213-227. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a12/

[1] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR | Zbl

[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[3] Daletskii Yu. L., Krein S. G., “Integrirovanie i differentsirovanie funktsii ermitovykh operatorov i primeneniya k teorii vozmuschenii”, Tr. sem. po funkts. analizu Voronezh. un-ta, Vyp. 1, 1956, 81–105

[4] Peller V. V., “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 19:2 (1985), 37–51 | MR | Zbl

[5] Davidson K. R., $C^*$-Algebras by Example, Fields Institute Monogr. Ser., 6, Amer. Math. Soc., 1996 | MR | Zbl

[6] Shulman T., “On covariant maps of matrices”, Methods Funct. Anal. Topology, 9:3 (2003), 252–261 | MR | Zbl