Property~(T) for topological groups and $C^*$-algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 171-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present (mostly expository) paper is to show relations of a generalization of Kazhdan's property (T) for $C^*$-algebras introduced in our recent paper, to this of B. Bekka. It is shown that our definition coincides with Bekka's definition for group $C^*$-algebras of locally compact groups, whereas, in general, these definitions are distinct. Criteria for a $C^*$-algebra to possess our property (T) are given. A number of examples of $C^*$-algebras with and without property (T) are considered. Relations to $K$-theory are studied.
@article{FPM_2007_13_8_a10,
     author = {A. A. Pavlov and E. V. Troitskii},
     title = {Property~(T) for topological groups and $C^*$-algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--192},
     publisher = {mathdoc},
     volume = {13},
     number = {8},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a10/}
}
TY  - JOUR
AU  - A. A. Pavlov
AU  - E. V. Troitskii
TI  - Property~(T) for topological groups and $C^*$-algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 171
EP  - 192
VL  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a10/
LA  - ru
ID  - FPM_2007_13_8_a10
ER  - 
%0 Journal Article
%A A. A. Pavlov
%A E. V. Troitskii
%T Property~(T) for topological groups and $C^*$-algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 171-192
%V 13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a10/
%G ru
%F FPM_2007_13_8_a10
A. A. Pavlov; E. V. Troitskii. Property~(T) for topological groups and $C^*$-algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 8, pp. 171-192. http://geodesic.mathdoc.fr/item/FPM_2007_13_8_a10/

[1] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[2] Kazhdan D. A., “O svyazi dualnogo prostranstva gruppy so strukturoi eë zamknutykh podgrupp”, Funkts. analiz i ego pril., 1 (1967), 71–74 | Zbl

[3] Manuilov V. M., Troitskii E. V., $C^*$-gilbertovy moduli, Faktorial, M., 2001

[4] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[5] Mischenko A. S., Fomenko A. T., “Indeks ellipticheskikh operatorov nad $C^*$-algebrami”, Izv. AN SSSR. Ser. mat., 43 (1979), 831–859 | MR | Zbl

[6] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[7] Serëgin V. V., “Refleksivnost $C^*$-gilbertovykh modulei, poluchennykh iz deistvii grupp”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2003, no. 1, 40–45, 72 | MR | Zbl

[8] Khalmosh P., Teoriya mery, Faktorial, M., 2003

[9] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR | Zbl

[10] Bekka M. B., “Property (T) for $C^*$-algebras”, Bull. London Math. Soc., 38 (2006), 857–867 | DOI | MR | Zbl

[11] Bekka M. B., de la Harpe P., Valette A., Kazhdan's property (T), Preprint

[12] Brown N., “Kazhdan's property T and $C^*$-algebras”, J. Funct. Anal., 240 (2006), 290–296 | DOI | MR | Zbl

[13] Connes A., “A factor of type $\mathrm{II}_1$ with countable fundamental group”, J. Operator Theory, 4:1 (1980), 151–153 | MR | Zbl

[14] Connes A., Jones V., “Property T for von Neumann algebras”, Bull. London Math. Soc., 17:1 (1985), 57–62 | DOI | MR | Zbl

[15] Dauns J., Hofmann K. H., Representations of Rings by Continuous Sections, Mem. Amer. Math. Soc., 83, Amer. Math. Soc., Providence, 1968 | MR | Zbl

[16] Dixmier J., “Points séparés dans le spectre d'une $C^*$-algèbre”, Acta Sci. Math., 22 (1961), 115–128 | MR | Zbl

[17] Elliott G. A., Olesen D., “A simple proof of the Dauns–Hofmann theorem”, Math. Scand., 34 (1974), 231–234 | MR | Zbl

[18] Frank M., “Self-duality and $C^*$-reflexivity of Hilbert $C^*$-modules”, Z. Anal. Anwendungen, 9 (1990), 165–176 | MR

[19] Frank M., “Geometrical aspects of Hilbert $C^*$-modules”, Positivity, 3 (1999), 215–243 | DOI | MR | Zbl

[20] Frank M., Manuilov V. M., Troitsky E. V., “On conditional expectations arising from group actions”, Z. Anal. Anwendungen, 16 (1997), 831–850 | MR | Zbl

[21] Haagerup U., “The standard form of von Neumann algebras”, Math. Scand., 37:2 (1975), 271–283 | MR

[22] De la Harpe P., Valette A., La propriété (T) de Kazhdan pour les groupes localement compacts, Avec un appendice de Marc Burger, Astérisque, 175, Soc. Math. France, Paris, 1989 | MR | Zbl

[23] Kasparov G. G., “Hilbert $C^*$-modules: Theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl

[24] Lance E. C., Hilbert $C^*$-Modules, A Toolkit for Operator Algebraists, London Math. Soc. Lect. Note Ser., 210, Cambridge Univ. Press, 1995 | MR | Zbl

[25] Lin H., “Injective Hilbert $C^*$-modules”, Pacific J. Math., 154 (1992), 131–164 | MR | Zbl

[26] Lubotzky A., Żuk A., On property ($\tau$) preliminary version, Preprint , 2003 http://www.ma.huji.ac.il/~alexlub/

[27] Manuilov V. M., Troitsky E. V., “Hilbert $C^*$- and $W^*$-modules and their morphisms”, J. Math. Sci., 98:2 (2000), 137–201 | DOI | MR | Zbl

[28] Pavlov A. A., Troitsky E. V., “A $C^*$-analogue of Kazhdan's property (T)”, Adv. Math., 216 (2007), 75–88 | DOI | MR | Zbl

[29] Pedersen G. K., $C^*$-Algebras and Their Automorphism Groups, London Math. Soc. Monogr., 14, Academic Press, London, 1979 | MR | Zbl

[30] Troitsky E. V., “Discrete groups actions and corresponding modules”, Proc. Amer. Math. Soc., 131:11 (2003), 3411–3422 | DOI | MR | Zbl

[31] Wagon S., The Banach–Tarski Paradox, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[32] Wegge-Olsen N. E., $K$-Theory and $C^*$-Algebras, Oxford Univ. Press, Oxford, 1993 | MR | Zbl