Plane trees with nine edges. Catalog
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 159-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized Chebyshev polynomials and definition fields are computed for all pairwise nonisotopic plane trees with nine edges.
@article{FPM_2007_13_6_a9,
     author = {Yu. Yu. Kochetkov},
     title = {Plane trees with nine edges. {Catalog}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--195},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a9/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - Plane trees with nine edges. Catalog
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 159
EP  - 195
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a9/
LA  - ru
ID  - FPM_2007_13_6_a9
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T Plane trees with nine edges. Catalog
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 159-195
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a9/
%G ru
%F FPM_2007_13_6_a9
Yu. Yu. Kochetkov. Plane trees with nine edges. Catalog. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 159-195. http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a9/

[1] Bétréma J., Péré D., Zvonkin A., Plane Trees and Their Shabat Polynomials. Catalog, Technical Report LaBRI No 92-75, Bordeaux, 1992