Geometry of plane trees
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 149-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

“True form” of plane trees, i.e., the geometry of sets $p^{-1}[0,1]$, where $p$ is a Chebyshev polynomial, is considered. Empiric data about true form are studied and systematized.
@article{FPM_2007_13_6_a8,
     author = {Yu. Yu. Kochetkov},
     title = {Geometry of plane trees},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--158},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a8/}
}
TY  - JOUR
AU  - Yu. Yu. Kochetkov
TI  - Geometry of plane trees
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 149
EP  - 158
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a8/
LA  - ru
ID  - FPM_2007_13_6_a8
ER  - 
%0 Journal Article
%A Yu. Yu. Kochetkov
%T Geometry of plane trees
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 149-158
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a8/
%G ru
%F FPM_2007_13_6_a8
Yu. Yu. Kochetkov. Geometry of plane trees. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 149-158. http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a8/

[4] Dremov V., Kochetkov Yu. Yu., “Geometriya derevev i abelevy integraly”, Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 2003, 61–74

[5] Kochetkov Yu. Yu., “O geometrii odnogo klassa ploskikh derevev”, Funkts. analiz i ego pril., 33:4 (1999), 78–81 | MR | Zbl

[6] Bétréma J., Péré D., Zvonkin A., Plane Trees and Their Shabat Polynomials. Catalog, Technical Report LaBRI No 92-75, Bordeaux, 1992

[7] Shabat G. B., Zvonkin A. K., “Plane trees and algebraic numbers”, Jerusalem Combinatorics' 93, Contemp. Math., 178, eds. H. Barcelo, G. Kalai, Amer. Math. Soc., 1994, 233–275 | MR | Zbl