Combinatorics of trivalent ribbon graphs with two faces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 113-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the combinatorics of trivalent ribbon graphs (dessins d'enfants) with two faces is under consideration.
@article{FPM_2007_13_6_a4,
     author = {I. V. Artamkin},
     title = {Combinatorics of trivalent ribbon graphs with two faces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a4/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Combinatorics of trivalent ribbon graphs with two faces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 113
EP  - 120
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a4/
LA  - ru
ID  - FPM_2007_13_6_a4
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Combinatorics of trivalent ribbon graphs with two faces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 113-120
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a4/
%G ru
%F FPM_2007_13_6_a4
I. V. Artamkin. Combinatorics of trivalent ribbon graphs with two faces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 113-120. http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a4/

[1] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[2] Lando S. K., Zvonkin A. K., Graphs on Surfaces and Their Applications, Encyclopedia of Mathematical Sciences, 141, Springer, Berlin, 2004 | MR | Zbl