On the generalized Chebyshev polynomials corresponding to plane trees of diameter~4
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 19-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The combinatorial classification of plane trees by the number of realizations of their valency sets has distinguished some special classes of plane trees. One of them, the plane trees of diameter 4, turned out to be a very interesting object of investigation from the Galois action point of view. In this paper, we present equation sets for some subclasses of trees of diameter 4, calculate discriminants of the corresponding generalized Chebyshev polynomials, some related polynomials, and their fields of definitions, and use this to get some information about the Galois action on plane trees.
@article{FPM_2007_13_6_a2,
     author = {N. M. Adrianov},
     title = {On the generalized {Chebyshev} polynomials corresponding to plane trees of diameter~4},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a2/}
}
TY  - JOUR
AU  - N. M. Adrianov
TI  - On the generalized Chebyshev polynomials corresponding to plane trees of diameter~4
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 19
EP  - 33
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a2/
LA  - ru
ID  - FPM_2007_13_6_a2
ER  - 
%0 Journal Article
%A N. M. Adrianov
%T On the generalized Chebyshev polynomials corresponding to plane trees of diameter~4
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 19-33
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a2/
%G ru
%F FPM_2007_13_6_a2
N. M. Adrianov. On the generalized Chebyshev polynomials corresponding to plane trees of diameter~4. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 6, pp. 19-33. http://geodesic.mathdoc.fr/item/FPM_2007_13_6_a2/

[1] Adrianov N. M., “O ploskikh derevyakh s zadannym kolichestvom realizatsii naborov valentnostei”, Fundament. i prikl. mat., 13:6 (2007), 9–17 | MR

[2] Leng S., Algebra, Mir, M., 1968

[3] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[4] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[5] Shabat G. B., “Mnimo-kvadratichnye resheniya antivandermondovykh sistem s 4 neizvestnymi i orbity Galua derevev diametra 4”, Fundament. i prikl. mat., 9:3 (2003), 229–236 | MR | Zbl

[6] Adrianov N., Shabat G., “Plane trees and classical mathematics”, J. Math. Sci., 82:6 (1996), 3747–3753 | DOI | MR | Zbl

[7] Adrianov N., Zvonkin A., “Composition of plane trees”, Acta Appl. Math., 52:1–3 (1998), 239–245 | DOI | MR | Zbl

[8] Birch B., “Noncongruence subgroups, covers and drawings”, The Grothendieck Theory of Dessins d'Enfants, London Math. Soc. Lect. Note Ser., 200, ed. L. Schneps, Cambridge Univ. Press, Cambridge, 1994, 25–46 | MR | Zbl

[9] Kochetkov Yu. Yu., “Trees of diameter 4”, Formal Power Series and Algebraic Combinatorics, Proc. of the 12th Int. Conf., FPSAC'00, Moscow, Russia, June 26–30, 2000, ed. D. Krob, Springer, Berlin, 2000, 447–475 | MR

[10] Schneps L., “Dessins d'enfants on the Riemann sphere”, The Grothendieck Theory of Dessins d'Enfants, London Math. Soc. Lect. Note Ser., 200, ed. L. Schneps, Cambridge Univ. Press, Cambridge, 1994, 47–78 | MR

[11] Shabat G. B., Zvonkin A. K., “Plane trees and algebraic numbers”, Jerusalem Combinatorics'93, Contemp. Math., 178, eds. H. Barcelo, G. Kalai, Amer. Math. Soc., 1994, 233–275 | MR | Zbl

[12] L. Schneps (ed.), The Grothendieck Theory of Dessins d'Enfants, London Math. Soc. Lect. Note Ser., 200, Cambridge Univ. Press, Cambridge, 1994 | MR

[13] Zapponi L., “Fleurs, arbres et cellules: Un invariant galoisien pour une famille d'arbres”, Compositio Math., 122:2 (2000), 113–133 | DOI | MR | Zbl