Monomiality of finite groups with some conditions on conjugacy classes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 201-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

We expose some arithmetical type conditions on the set of conjugacy classes of a finite group that are sufficient for the monomiality of the group, i.e., for the property that all its irreducible complex characters are induced by linear characters of subgroups.
@article{FPM_2007_13_5_a8,
     author = {S. N. Fedorov},
     title = {Monomiality of finite groups with some conditions on conjugacy classes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {201--212},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a8/}
}
TY  - JOUR
AU  - S. N. Fedorov
TI  - Monomiality of finite groups with some conditions on conjugacy classes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 201
EP  - 212
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a8/
LA  - ru
ID  - FPM_2007_13_5_a8
ER  - 
%0 Journal Article
%A S. N. Fedorov
%T Monomiality of finite groups with some conditions on conjugacy classes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 201-212
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a8/
%G ru
%F FPM_2007_13_5_a8
S. N. Fedorov. Monomiality of finite groups with some conditions on conjugacy classes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 201-212. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a8/

[1] Kazarin L. S., “O gruppakh s izolirovannymi klassami sopryazhennykh elementov”, Izv. vyssh. uchebn. zaved. Matematika, 1981, no. 7(230), 40–45 | MR | Zbl

[2] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[3] Fedorov S. N., “Priznaki monomialnosti gruppy Frobeniusa”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2007, no. 5, 64–65 | MR | Zbl

[4] Bertram E., Herzog M., Mann A., “On a graph related to conjugacy classes of groups”, Bull. London Math. Soc., 22 (1990), 569–575 | DOI | MR | Zbl

[5] Chillag D., Herzog M., “On the length of the conjugacy classes of finite groups”, J. Algebra, 131:1 (1990), 110–125 | DOI | MR | Zbl

[6] Conway J., Curtis R., Norton S., Parker R., Wilson R., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[7] Horváth E., “On a problem of finite solvable groups”, Mat. Lapok, 34:1–3 (1987), 99–108 | Zbl

[8] Huppert B., “A characterization of $\operatorname{GL}(2,3)$ and $\operatorname{SL}(2,5)$ by the degrees of their representations”, Forum Math., 1 (1989), 167–183 | DOI | MR | Zbl

[9] Huppert B., Character Theory of Finite Groups, Walter de Gruyter, Berlin, 1998 | MR | Zbl

[10] Itô N., “Note on $A$-groups”, Nagoya Math. J., 4 (1952), 79–81 | MR | Zbl

[11] Moretó A., Qian G., Shi W., “Finite groups whose conjugacy class graphs have few vertices”, Arch. Math., 85:2 (2005), 101–107 | DOI | MR | Zbl

[12] Seitz G. M., “$M$-groups and the supersolvable residual”, Math. Z., 110:2 (1969), 101–122 | DOI | MR | Zbl

[13] Taketa K., “Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen”, Proc. Japan. Imp. Acad., 6 (1930), 31–33 | DOI | MR | Zbl

[14] Zassenhaus H., “Über endliche Fastkörper”, Abh. Math. Sem. Univ. Hamburg, 11, 1935/1936, 187–220