Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_5_a8, author = {S. N. Fedorov}, title = {Monomiality of finite groups with some conditions on conjugacy classes}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {201--212}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a8/} }
S. N. Fedorov. Monomiality of finite groups with some conditions on conjugacy classes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 201-212. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a8/
[1] Kazarin L. S., “O gruppakh s izolirovannymi klassami sopryazhennykh elementov”, Izv. vyssh. uchebn. zaved. Matematika, 1981, no. 7(230), 40–45 | MR | Zbl
[2] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR
[3] Fedorov S. N., “Priznaki monomialnosti gruppy Frobeniusa”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2007, no. 5, 64–65 | MR | Zbl
[4] Bertram E., Herzog M., Mann A., “On a graph related to conjugacy classes of groups”, Bull. London Math. Soc., 22 (1990), 569–575 | DOI | MR | Zbl
[5] Chillag D., Herzog M., “On the length of the conjugacy classes of finite groups”, J. Algebra, 131:1 (1990), 110–125 | DOI | MR | Zbl
[6] Conway J., Curtis R., Norton S., Parker R., Wilson R., Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[7] Horváth E., “On a problem of finite solvable groups”, Mat. Lapok, 34:1–3 (1987), 99–108 | Zbl
[8] Huppert B., “A characterization of $\operatorname{GL}(2,3)$ and $\operatorname{SL}(2,5)$ by the degrees of their representations”, Forum Math., 1 (1989), 167–183 | DOI | MR | Zbl
[9] Huppert B., Character Theory of Finite Groups, Walter de Gruyter, Berlin, 1998 | MR | Zbl
[10] Itô N., “Note on $A$-groups”, Nagoya Math. J., 4 (1952), 79–81 | MR | Zbl
[11] Moretó A., Qian G., Shi W., “Finite groups whose conjugacy class graphs have few vertices”, Arch. Math., 85:2 (2005), 101–107 | DOI | MR | Zbl
[12] Seitz G. M., “$M$-groups and the supersolvable residual”, Math. Z., 110:2 (1969), 101–122 | DOI | MR | Zbl
[13] Taketa K., “Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen”, Proc. Japan. Imp. Acad., 6 (1930), 31–33 | DOI | MR | Zbl
[14] Zassenhaus H., “Über endliche Fastkörper”, Abh. Math. Sem. Univ. Hamburg, 11, 1935/1936, 187–220