Coadjoint orbits of the group~$\operatorname{UT}(7,K)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 127-159

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the irreducible representations and the coadjoint orbits of a unitriangular group of size less than or equal to seven. We classify the subregular orbits of a unitriangular group of arbitrary size.
@article{FPM_2007_13_5_a4,
     author = {M. V. Ignat'ev and A. N. Panov},
     title = {Coadjoint orbits of the group~$\operatorname{UT}(7,K)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--159},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/}
}
TY  - JOUR
AU  - M. V. Ignat'ev
AU  - A. N. Panov
TI  - Coadjoint orbits of the group~$\operatorname{UT}(7,K)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 127
EP  - 159
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/
LA  - ru
ID  - FPM_2007_13_5_a4
ER  - 
%0 Journal Article
%A M. V. Ignat'ev
%A A. N. Panov
%T Coadjoint orbits of the group~$\operatorname{UT}(7,K)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 127-159
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/
%G ru
%F FPM_2007_13_5_a4
M. V. Ignat'ev; A. N. Panov. Coadjoint orbits of the group~$\operatorname{UT}(7,K)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 127-159. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/