Coadjoint orbits of the group~$\operatorname{UT}(7,K)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 127-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the irreducible representations and the coadjoint orbits of a unitriangular group of size less than or equal to seven. We classify the subregular orbits of a unitriangular group of arbitrary size.
@article{FPM_2007_13_5_a4,
     author = {M. V. Ignat'ev and A. N. Panov},
     title = {Coadjoint orbits of the group~$\operatorname{UT}(7,K)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--159},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/}
}
TY  - JOUR
AU  - M. V. Ignat'ev
AU  - A. N. Panov
TI  - Coadjoint orbits of the group~$\operatorname{UT}(7,K)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 127
EP  - 159
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/
LA  - ru
ID  - FPM_2007_13_5_a4
ER  - 
%0 Journal Article
%A M. V. Ignat'ev
%A A. N. Panov
%T Coadjoint orbits of the group~$\operatorname{UT}(7,K)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 127-159
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/
%G ru
%F FPM_2007_13_5_a4
M. V. Ignat'ev; A. N. Panov. Coadjoint orbits of the group~$\operatorname{UT}(7,K)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 127-159. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a4/

[1] Burbaki N., Gruppy i algebry Li. Glavy 4,5,6, Mir, M, 1972 | MR | Zbl

[2] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M, 1978 | MR

[3] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17 (1962), 57–110 | MR | Zbl

[4] Kirillov A. A., Lektsii po metodu orbit, Nauchnaya kniga (IDMI), Novosibirsk, 2002

[5] Kraft Kh., Geometricheskie metody v teorii invariantov, IO NFMI, 2000

[6] Andre Carlos A. M., “Basic characters of the unitriangular group”, J. Algebra, 175 (1995), 287–319 | DOI | MR | Zbl

[7] Andre Carlos A. M., “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176 (1995), 959–1000 | DOI | MR | Zbl

[8] Andre Carlos A. M., “The basic character table of the unitriangular group”, J. Algebra, 241 (2001), 437–471 | DOI | MR | Zbl

[9] Gekhtman M. I., Shapiro M. Z., “Noncommutative and commutative integrability of generic Toda flows in simple Lie algebras”, Comm. Pure Appl. Math., 11 (1999), 53–84 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[10] Kirillov A. A., “Variations on the triangular theme”, Amer. Math. Soc. Transl. (2), 169 (1995), 43–72 | MR

[11] Kirillov A. A., Melnikov A., “On a remarkable sequences of polynomials”, Algèbre non commutative, groupes quantiques et invariants, Septième contact Franco-Belge, Reims, Juin 1995, Séminaires et Congrès, 2, eds. J. Alev, G. Cauchon, Soc. Math. de France, 1997, 35–42 | MR