@article{FPM_2007_13_5_a3,
author = {M. V. Ignat'ev},
title = {Subregular characters of the unitriangular group over a~finite field},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {103--125},
year = {2007},
volume = {13},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a3/}
}
M. V. Ignat'ev. Subregular characters of the unitriangular group over a finite field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 103-125. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a3/
[1] Ignatev M. V., “Kharaktery unitreugolnoi gruppy nad konechnym polem”, Materialy XIII Mezhdunarodnoi konferentsii studentov, aspirantov i molodykh uchenykh “Lomonosov”, T. IV, Izd-vo Mosk. un-ta, M., 2006, 65–66
[2] Kirillov A. A., Lektsii po metodu orbit, Nauchnaya kniga IDMI, Novosibirsk, 2002
[3] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17 (1962), 57–110 | MR | Zbl
[4] Kirillov A. A., Metod orbit i konechnye gruppy, MTsNMO, MK NMU, M., 1998
[5] Andre C. A. M., “Basic characters of the unitriangular group”, J. Algebra, 175 (1995), 287–319 | DOI | MR | Zbl
[6] Andre C. A. M., “The basic character table of the unitriangular group”, J. Algebra, 241 (2001), 437–471 | DOI | MR | Zbl
[7] Ignatev M. V., Panov A. N., Coadjoint orbits of the group $\operatorname{UT}(7,K)$, , 2006 arXiv: math.RT/0603649 | MR
[8] Kazhdan D., “Proof of Springer's hypothesis”, Israel J. Math., 28 (1977), 272–286 | DOI | MR | Zbl
[9] Kirillov A. A., “Variations on the triangular theme”, Amer. Math. Soc. Transl., 169 (1995), 43–73 | MR | Zbl
[10] Lehrer G. I., “Discrete series and the unipotent subgroup”, Composito Math., 28:1 (1974), 9–19 | MR | Zbl
[11] Lusztig G., “Subregular nilpotent elements and bases in $K$-theory”, Can. J. Math., 51:6 (1999), 1194–1225 | DOI | MR | Zbl
[12] Steinberg R., Conjugacy Classes in Algebraic Groups, Lect. Notes Math., 366, Springer, Berlin, 1974 | MR | Zbl