A~note on immanant preservers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 113-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the maps that transform one immanant into another. No surjectivity or linearity is imposed; the rudiments of the former are weakly embedded into the functional equation via $d_\chi(\Phi(A)+\lambda\Phi(B))=d_{\chi'}(A+\lambda B)$. We show that this property alone implies that $\Phi$ is linear and bijective.
@article{FPM_2007_13_4_a5,
     author = {B. Kuzma},
     title = {A~note on immanant preservers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/}
}
TY  - JOUR
AU  - B. Kuzma
TI  - A~note on immanant preservers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 113
EP  - 120
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/
LA  - ru
ID  - FPM_2007_13_4_a5
ER  - 
%0 Journal Article
%A B. Kuzma
%T A~note on immanant preservers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 113-120
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/
%G ru
%F FPM_2007_13_4_a5
B. Kuzma. A~note on immanant preservers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 113-120. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/

[1] Binet J. P. M., “Mémoire sur un système de formules analytic, et leur application à des considérations géometriques”, J. École Polyt., 9:280–302 (1812)

[2] Botta P., “On the conversion of the determinant into the permanent”, Can. Math. Bull., 11 (196), 31–34 | DOI | MR | Zbl

[3] Cauchy A.-L., “Mémoire sur les fonctions qui ne peuvent obtenir que deux valeur égales et de signes contraires par suite des transpositions opérées entres les varibles qu'elles renferment”, J. École Polyt., 10 (1812), 29–112

[4] Coelho M. P., Duffner M. A., “On the conversion of an immanant into another”, Linear and Multilinear Algebra, 44 (1998), 111–130 | DOI | MR | Zbl

[5] Coelho M. P., Duffner M. A., “Immanant preserving and immanant converting maps”, Linear Algebra Appl., 418:1 (2006), 177–187 | DOI | MR | Zbl

[6] Dolinar G., Šemrl P., “Determinant preserving maps on matrix algebras”, Linear Algebra Appl., 348:1-3 (2002), 189–192 | DOI | MR | Zbl

[7] Duffner M. A., “On the conversion of an immanant into another”, Linear and Multilinear Algebra, 44 (1998), 111–130 | DOI | MR | Zbl

[8] Frobenius G., “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Deutsch. Akad. Wiss., 1897, 994–1015 | Zbl

[9] Fulton W., Harris J., Representration Theory, Springer-Verlag, New York, 1991 | MR

[10] Knuth D. E., The Art of Computer Programming. Vol. 2. Seminumerical algorithms, Addison-Wesley, Amsterdam, 1997 | MR

[11] Littlewood D. E., The Theory of Group Characters, Oxford Univ. Press, Oxford, 1950 | Zbl

[12] Littlewood D. E., Richardson A. R., “Group characters and algebra”, Philos. Trans. Roy. Soc. London Ser. A, 233 (1934), 99–141 | DOI | Zbl

[13] Marcus M., May F. C., “The permanent function”, Can. J. Math., 14 (1962), 177–189 | DOI | MR | Zbl

[14] Marcus M., Minc H., “On the relation between the determinant and the permanent”, Illinois J. Math., 5 (1961), 376–381 | MR | Zbl

[15] Miller G. A., “On the history of determinants”, Amer. Math. Monthly, 37:5 (1930), 216–219 | DOI | MR | Zbl

[16] Minc H., Permanents, With a foreword by Marvin Marcus, Encyclopedia of Mathematics and Its Applications, 6, Addison-Wesley, Reading, 1978 | MR | Zbl

[17] Pierce S., “Algebraic sets, polynomials, and other functions. A survey of linear preserver problems”, Linear and Multilinear Algebra, 33 (1992), 31–52 | DOI | MR | Zbl

[18] Sheldon A., “Down with determinants!”, Amer. Math. Monthly, 102:2 (1995), 139–154 | DOI | MR | Zbl

[19] Tan V., Wang F., “On determinant preserver problems”, Linear Algebra Appl., 369 (2003), 311–317 | DOI | MR | Zbl