A~note on immanant preservers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 113-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the maps that transform one immanant into another. No surjectivity or linearity is imposed; the rudiments of the former are weakly embedded into the functional equation via $d_\chi(\Phi(A)+\lambda\Phi(B))=d_{\chi'}(A+\lambda B)$. We show that this property alone implies that $\Phi$ is linear and bijective.
@article{FPM_2007_13_4_a5,
     author = {B. Kuzma},
     title = {A~note on immanant preservers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/}
}
TY  - JOUR
AU  - B. Kuzma
TI  - A~note on immanant preservers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 113
EP  - 120
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/
LA  - ru
ID  - FPM_2007_13_4_a5
ER  - 
%0 Journal Article
%A B. Kuzma
%T A~note on immanant preservers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 113-120
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/
%G ru
%F FPM_2007_13_4_a5
B. Kuzma. A~note on immanant preservers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 113-120. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/