A~note on immanant preservers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 113-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the maps that transform one immanant into another. No surjectivity or linearity is imposed; the rudiments of the former are weakly embedded into the functional equation via
$d_\chi(\Phi(A)+\lambda\Phi(B))=d_{\chi'}(A+\lambda B)$. We show that this property alone implies that $\Phi$ is linear and bijective.
@article{FPM_2007_13_4_a5,
author = {B. Kuzma},
title = {A~note on immanant preservers},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {113--120},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/}
}
B. Kuzma. A~note on immanant preservers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 113-120. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a5/