Equations determining Belyi pairs, with applications to anti-Vandermonde systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 95-112

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with Grothendieck dessins d'enfants, i.e., tamely embedded graphs on surfaces, and Belyi pairs, i.e., rational functions with at most three critical values on algebraic curves. The relationship between these objects was promoted by Grothendieck. We investigate combinatorics of systems of equations determining a Belyi pair corresponding to a given dessin. Some properties of extra, or so-called parasitic, solutions of such systems are described. As a corollary, we obtain some applications concerning anti-Vandermonde systems.
@article{FPM_2007_13_4_a4,
     author = {E. M. Kreines},
     title = {Equations determining {Belyi} pairs, with applications to {anti-Vandermonde} systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--112},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/}
}
TY  - JOUR
AU  - E. M. Kreines
TI  - Equations determining Belyi pairs, with applications to anti-Vandermonde systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 95
EP  - 112
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/
LA  - ru
ID  - FPM_2007_13_4_a4
ER  - 
%0 Journal Article
%A E. M. Kreines
%T Equations determining Belyi pairs, with applications to anti-Vandermonde systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 95-112
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/
%G ru
%F FPM_2007_13_4_a4
E. M. Kreines. Equations determining Belyi pairs, with applications to anti-Vandermonde systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 95-112. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/