Equations determining Belyi pairs, with applications to anti-Vandermonde systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 95-112
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with Grothendieck dessins d'enfants, i.e., tamely embedded graphs on surfaces, and Belyi pairs, i.e., rational functions with at most three critical values on algebraic
curves. The relationship between these objects was promoted by Grothendieck. We investigate combinatorics of systems of equations determining a Belyi pair corresponding to a given dessin. Some properties of extra, or so-called parasitic, solutions of such systems are described. As a corollary, we obtain some applications concerning anti-Vandermonde systems.
@article{FPM_2007_13_4_a4,
author = {E. M. Kreines},
title = {Equations determining {Belyi} pairs, with applications to {anti-Vandermonde} systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {95--112},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/}
}
TY - JOUR AU - E. M. Kreines TI - Equations determining Belyi pairs, with applications to anti-Vandermonde systems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 95 EP - 112 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/ LA - ru ID - FPM_2007_13_4_a4 ER -
E. M. Kreines. Equations determining Belyi pairs, with applications to anti-Vandermonde systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 95-112. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/