Equations determining Belyi pairs, with applications to anti-Vandermonde systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 95-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with Grothendieck dessins d'enfants, i.e., tamely embedded graphs on surfaces, and Belyi pairs, i.e., rational functions with at most three critical values on algebraic curves. The relationship between these objects was promoted by Grothendieck. We investigate combinatorics of systems of equations determining a Belyi pair corresponding to a given dessin. Some properties of extra, or so-called parasitic, solutions of such systems are described. As a corollary, we obtain some applications concerning anti-Vandermonde systems.
@article{FPM_2007_13_4_a4,
     author = {E. M. Kreines},
     title = {Equations determining {Belyi} pairs, with applications to {anti-Vandermonde} systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--112},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/}
}
TY  - JOUR
AU  - E. M. Kreines
TI  - Equations determining Belyi pairs, with applications to anti-Vandermonde systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 95
EP  - 112
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/
LA  - ru
ID  - FPM_2007_13_4_a4
ER  - 
%0 Journal Article
%A E. M. Kreines
%T Equations determining Belyi pairs, with applications to anti-Vandermonde systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 95-112
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/
%G ru
%F FPM_2007_13_4_a4
E. M. Kreines. Equations determining Belyi pairs, with applications to anti-Vandermonde systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 95-112. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a4/

[1] Adrianov N. M., Arifmeticheskaya teoriya grafov na poverkhnostyakh, Dis. $\dots$ kand. fiz.-mat. nauk, M., 1997 | MR

[2] Adrianov N. M., Kochetkov Yu. Yu., Shabat G. B., Suvorov A. D., “Ploskie derevya i gruppy Mate”, Fundament. i prikl. mat., 1:2 (1995), 377–384 | MR | Zbl

[3] Amburg N. Ya., Kreines E. M., Shabat G. B., “Paraziticheskie resheniya sistem uravnenii, opredelyayuschikh pary Belogo ploskikh derevev”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2004, no. 1, 20–25 | MR | Zbl

[4] Belyi G. B., “O rasshireniyakh Galua maksimalnykh tsiklotomicheskikh polei”, Izv. AN SSSR. Ser. mat., 43 (1979), 269–276 | MR

[5] Kochetkov Yu. Yu., “Derevya diametra 4”, Fundament. i prikl. mat., 8:2 (2002), 475–494 | MR | Zbl

[6] Kreines E. M., “Paraziticheskie resheniya sistem uravnenii na funktsii Belogo v prostranstvakh Gurvitsa”, Uspekhi mat. nauk, 56:6 (2001), 155–156 | MR | Zbl

[7] Kreines E. M., “Semeistva geometricheskikh paraziticheskikh reshenii sistem uravnenii na funktsii Belogo roda 0”, Fundament. i prikl. mat., 9:1 (2003), 103–111 | MR

[8] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[9] Shafarevich I. R., Osnovaniya algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[10] Bètrèma J., Pérè D., Zvonkin A., Plane trees and their Shabat polynomials, catalog, Rapport interne de LaBRI. No 75-92, Bordeaux, 1992

[11] Grothendieck A., “Esquisse d'un programme”, London Math. Soc. Lect. Notes Ser., 242, Cambridge Univ. Press, Cambridge, 1997, 5–48 | MR | Zbl

[12] Iohvidov I. S., Hankel and Toeplitz Matrices and Forms, Algebraic Theory, Birkhäuser, Boston, 1982 | MR | Zbl

[13] Iwasaki K., Kimura H., Shimomura Sh., Yoshida M., From Gauss to Painlevé, Aspects Math., 16, Vieweg Verlag, Braunschweig, 1991 | MR | Zbl

[14] Kravanja P., van Barel M., Computing the Zeros of Analytic Functions, Lect. Notes Math., 1727, Springer-Verlag, Berlin, 2000 | MR | Zbl

[15] Lando S. K., Zvonkin A. K., Graphs on Surfaces and Their Applications, With an appendix by D. Zagier, Encycl. Math. Sci., 141, Springer-Verlag, Berlin, 2004 | MR | Zbl

[16] Lochak P., Schneps L., Geometric Galois Actions, Vol. 1, 2, London Math. Soc. Lect. Notes Ser., 242, 243, Cambridge Univ. Press, Cambridge, 1997 | MR

[17] Looijenga E., “Cellular decompositions of compactified moduli spaces of pointed curves”, The Moduli Space of Curves, eds. R. Dijkgraaf et al., Birkhäuser, Basel, 1995, 369–400 | MR | Zbl

[18] Shabat G. B., Voevodsky V. A., “Drawing curves over number fields”, The Grothendieck Festschrift, Vol. III, Progress Math., 88, Birkhäuser, Boston, 1990, 199–227 | MR | Zbl

[19] Shabat G., Zvonkin A., “Plane trees and algebraic numbers”, Jerusalem Combinatorics ' 93, Contemp. Math., 178, eds. H. Barcelo, G. Kalai, Amer. Math. Soc., Providence, RI, 1994, 233–275 | MR | Zbl

[20] Schneps L. (ed.), The Grothendieck Theory of Dessins d'Enfants, London Math. Soc. Lect. Notes Ser., 200, Cambridge Univ. Press, Cambridge, 1994 | MR

[21] Zvonkine D., Strebel differentials on stable curves and Kontsevich's proof of Witten's conjecture, , 2002 arXiv: math.AG/0209071