Cramer's rule for quaternionic systems of linear equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 67-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

New definitions of determinant functionals over the quaternion skew field are given in this paper. The inverse matrix over the quaternion skew field is represented by analogues of the classical adjoint matrix. Cramer's rules for right and left quaternionic systems of linear equations have been obtained.
@article{FPM_2007_13_4_a3,
     author = {I. I. Kirchei},
     title = {Cramer's rule for quaternionic systems of linear equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--94},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a3/}
}
TY  - JOUR
AU  - I. I. Kirchei
TI  - Cramer's rule for quaternionic systems of linear equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 67
EP  - 94
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a3/
LA  - ru
ID  - FPM_2007_13_4_a3
ER  - 
%0 Journal Article
%A I. I. Kirchei
%T Cramer's rule for quaternionic systems of linear equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 67-94
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a3/
%G ru
%F FPM_2007_13_4_a3
I. I. Kirchei. Cramer's rule for quaternionic systems of linear equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 67-94. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a3/

[1] Gelfand I. M., Retakh V. S., “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–35 | MR

[2] Gelfand I. M., Retakh V. S., “Teoriya nekommutativnykh determinantov i kharakteristicheskie funktsii grafov”, Funkts. analiz i ego pril., 26:4 (1992), 1–20 | MR

[3] Kirchei I. I., “Drobno-ratsionalnaya regulyarizatsiya sistemy lineinykh uravnenii nad telom kvaternionov”, Mat. metody i fiziko-mekhanicheskie polya, 39:2 (1996), 89–95 | MR

[4] Kirchei I. I., “Klassicheskaya prisoedinënnaya matritsa dlya ermitovoi nad telom”, Mat. metody i fiziko-mekhanicheskie polya, 44:3 (2001), 33–48 | MR

[5] Kirchei I. I., “Analog klassicheskoi prisoedinënnoi matritsy nad telom s involyutsiei”, Mat. metody i fiziko-mekhanicheskie polya, 46:4 (2003), 81–91 | MR

[6] Ponizovskii I. S., “Ob opredelitele matrits s elementami iz nekotorogo koltsa”, Mat. sb., 45(87):1 (1958), 3–16 | MR | Zbl

[7] Aslaksen H., “Quaternionic determinants”, Math. Intelligencer, 18:3 (1996), 57–65 | DOI | MR | Zbl

[8] Chen L., “Definition of determinant and Cramer solutions over quaternion field”, Acta Math. Sinica (New Ser.), 7:2 (1991), 171–180 | DOI | MR | Zbl

[9] Chen L., “Inverse matrix and properties of double determinant over quaternion field”, Sci. China, Ser. A, 34 (1991), 528–540 | MR | Zbl

[10] Cohen N., De Leo S., “The quaternionic determinant”, Electron. J. Linear Algebra, 7 (2000), 100–111 | MR | Zbl

[11] Dyson F. J., “Quaternion determinants”, Helv. Phys. Acta, 45 (1972), 289–302