Classification of squared normal operators on unitary and Euclidean spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 225-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a canonical form for a complex matrix whose square is normal under transformations of unitary similarity as well as a canonical form for a real matrix whose square is normal under transformations of orthogonal similarity.
@article{FPM_2007_13_4_a10,
     author = {V. M. Futornyi and R. A. Horn and V. V. Sergeichuk},
     title = {Classification of squared normal operators on unitary and {Euclidean} spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {225--232},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/}
}
TY  - JOUR
AU  - V. M. Futornyi
AU  - R. A. Horn
AU  - V. V. Sergeichuk
TI  - Classification of squared normal operators on unitary and Euclidean spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 225
EP  - 232
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/
LA  - ru
ID  - FPM_2007_13_4_a10
ER  - 
%0 Journal Article
%A V. M. Futornyi
%A R. A. Horn
%A V. V. Sergeichuk
%T Classification of squared normal operators on unitary and Euclidean spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 225-232
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/
%G ru
%F FPM_2007_13_4_a10
V. M. Futornyi; R. A. Horn; V. V. Sergeichuk. Classification of squared normal operators on unitary and Euclidean spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 225-232. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/

[1] Sergeichuk V. V., “Klassifikatsiya lineinykh operatorov v konechnomernom unitarnom prostranstve”, Funkts. analiz i ego pril., 18:3 (1984), 57–62 | MR

[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[3] Horn R. A., Sergeichuk V. V., “Some canonical forms for unitary congruence and $*$congruence”, Linear Multilinear Algebra (to appear) | MR

[4] Littlewood D. E., “On unitary equivalence”, J. London Math. Soc., 28 (1953), 314–322 | DOI | MR | Zbl

[5] Sergeichuk V. V., “Unitary and Euclidean representations of a quiver”, Linear Algebra Appl., 278 (1998), 37–62 | DOI | MR | Zbl

[6] Shapiro H., “A survey of canonical forms and invariants for unitary similarity”, Linear Algebra Appl., 147 (1991), 101–167 | DOI | MR | Zbl