Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_4_a10, author = {V. M. Futornyi and R. A. Horn and V. V. Sergeichuk}, title = {Classification of squared normal operators on unitary and {Euclidean} spaces}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {225--232}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/} }
TY - JOUR AU - V. M. Futornyi AU - R. A. Horn AU - V. V. Sergeichuk TI - Classification of squared normal operators on unitary and Euclidean spaces JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 225 EP - 232 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/ LA - ru ID - FPM_2007_13_4_a10 ER -
%0 Journal Article %A V. M. Futornyi %A R. A. Horn %A V. V. Sergeichuk %T Classification of squared normal operators on unitary and Euclidean spaces %J Fundamentalʹnaâ i prikladnaâ matematika %D 2007 %P 225-232 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/ %G ru %F FPM_2007_13_4_a10
V. M. Futornyi; R. A. Horn; V. V. Sergeichuk. Classification of squared normal operators on unitary and Euclidean spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 225-232. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a10/
[1] Sergeichuk V. V., “Klassifikatsiya lineinykh operatorov v konechnomernom unitarnom prostranstve”, Funkts. analiz i ego pril., 18:3 (1984), 57–62 | MR
[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[3] Horn R. A., Sergeichuk V. V., “Some canonical forms for unitary congruence and $*$congruence”, Linear Multilinear Algebra (to appear) | MR
[4] Littlewood D. E., “On unitary equivalence”, J. London Math. Soc., 28 (1953), 314–322 | DOI | MR | Zbl
[5] Sergeichuk V. V., “Unitary and Euclidean representations of a quiver”, Linear Algebra Appl., 278 (1998), 37–62 | DOI | MR | Zbl
[6] Shapiro H., “A survey of canonical forms and invariants for unitary similarity”, Linear Algebra Appl., 147 (1991), 101–167 | DOI | MR | Zbl