Automorphisms of Chevalley groups of types $B_2$ and $G_2$ over local rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 3-29

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we prove that every automorphism of any adjoint Chevalley group of type $B_2$ or $G_2$ is standard, i.e., it is a composition of an “inner” automorphism, a ring automorphism, and a central automorphism.
@article{FPM_2007_13_4_a0,
     author = {E. I. Bunina},
     title = {Automorphisms of {Chevalley} groups of types $B_2$ and $G_2$ over local rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--29},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a0/}
}
TY  - JOUR
AU  - E. I. Bunina
TI  - Automorphisms of Chevalley groups of types $B_2$ and $G_2$ over local rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 3
EP  - 29
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a0/
LA  - ru
ID  - FPM_2007_13_4_a0
ER  - 
%0 Journal Article
%A E. I. Bunina
%T Automorphisms of Chevalley groups of types $B_2$ and $G_2$ over local rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 3-29
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a0/
%G ru
%F FPM_2007_13_4_a0
E. I. Bunina. Automorphisms of Chevalley groups of types $B_2$ and $G_2$ over local rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 3-29. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a0/