Semisimple rings on completely decomposable Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 69-80
Cet article a éte moissonné depuis la source Math-Net.Ru
An Abelian group is said to be semisimple if it is the additive group of some semisimple associative ring. The problem of description of semisimple groups was formulated by Beaumont and Lawver; later this problem was reduced to the case of reduced groups. In this paper, we describe semisimple groups in the class of countable completely decomposable groups.
@article{FPM_2007_13_3_a9,
author = {E. I. Kompantseva},
title = {Semisimple rings on completely decomposable {Abelian} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {69--80},
year = {2007},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a9/}
}
E. I. Kompantseva. Semisimple rings on completely decomposable Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 69-80. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a9/
[1] Kompantseva E. I., “Poluprostye neredutsirovannye abelevy gruppy bez krucheniya”, Abelevy gruppy i moduli, no. 13, 14, Tomskii un-t, Tomsk, 1996, 67–76
[2] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974
[3] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977
[4] Beaumont R. A., Lawver D. A., “Strongly semisimple Abelian groups”, Publ. J. Math., 53:2 (1974), 327–336 | MR | Zbl
[5] Beaumont R. A., Pierce R. S., “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl
[6] Jacobson N., Structure of Rings, Amer. Math. Soc. Colloq. Publ., 37, Amer. Math. Soc., Providence, 1956 | MR | Zbl