Completely torsion-free, finite-rank, almost decomposable groups with torsion factor
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 61-67
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with almost completely decomposable finite rank groups $G$ that
have rank $1$ summands of pairwise noncomparable types. It is well known that
every such group has unique complete quasi-decomposition $A$ with respect to equality. We consider the number of almost completely decomposable groups $G$
with a given quasi\df decomposition $A$ for which $G/A$
is isomorphic to $\mathbb{Z}(p^m)$.
@article{FPM_2007_13_3_a8,
author = {S. F. Kozhukhov and A. C. Tveretin},
title = {Completely torsion-free, finite-rank, almost decomposable groups with torsion factor},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {61--67},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a8/}
}
TY - JOUR AU - S. F. Kozhukhov AU - A. C. Tveretin TI - Completely torsion-free, finite-rank, almost decomposable groups with torsion factor JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 61 EP - 67 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a8/ LA - ru ID - FPM_2007_13_3_a8 ER -
%0 Journal Article %A S. F. Kozhukhov %A A. C. Tveretin %T Completely torsion-free, finite-rank, almost decomposable groups with torsion factor %J Fundamentalʹnaâ i prikladnaâ matematika %D 2007 %P 61-67 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a8/ %G ru %F FPM_2007_13_3_a8
S. F. Kozhukhov; A. C. Tveretin. Completely torsion-free, finite-rank, almost decomposable groups with torsion factor. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 61-67. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a8/