Completely torsion-free, finite-rank, almost decomposable groups with torsion factor
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 61-67
This paper deals with almost completely decomposable finite rank groups $G$ that have rank $1$ summands of pairwise noncomparable types. It is well known that every such group has unique complete quasi-decomposition $A$ with respect to equality. We consider the number of almost completely decomposable groups $G$ with a given quasi\df decomposition $A$ for which $G/A$ is isomorphic to $\mathbb{Z}(p^m)$.
@article{FPM_2007_13_3_a8,
author = {S. F. Kozhukhov and A. C. Tveretin},
title = {Completely torsion-free, finite-rank, almost decomposable groups with torsion factor},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {61--67},
year = {2007},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a8/}
}
TY - JOUR AU - S. F. Kozhukhov AU - A. C. Tveretin TI - Completely torsion-free, finite-rank, almost decomposable groups with torsion factor JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 61 EP - 67 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a8/ LA - ru ID - FPM_2007_13_3_a8 ER -
S. F. Kozhukhov; A. C. Tveretin. Completely torsion-free, finite-rank, almost decomposable groups with torsion factor. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 61-67. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a8/
[1] Kozhukhov S. F., “Konechnye gruppy avtomorfizmov abelevykh grupp bez krucheniya konechnogo ranga”, Izv. AN SSSR, 52:3 (1988), 501–521 | Zbl
[2] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974
[3] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977