On $K$-large and generalized $K$-large Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 51-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of $K$-large and generalized $K$-large Abelian groups are introduced, and their main properties and interconnections are studied. We consider groups that are $K$-large (generalized $K$-large) with respect to the class of all groups and torsion-free groups. Main attention is paid to the case where $K$ consists of bounded $p$-groups for an infinite set of prime numbers $p$.
@article{FPM_2007_13_3_a7,
     author = {O. M. Katerinchuk},
     title = {On $K$-large and generalized $K$-large {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a7/}
}
TY  - JOUR
AU  - O. M. Katerinchuk
TI  - On $K$-large and generalized $K$-large Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 51
EP  - 60
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a7/
LA  - ru
ID  - FPM_2007_13_3_a7
ER  - 
%0 Journal Article
%A O. M. Katerinchuk
%T On $K$-large and generalized $K$-large Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 51-60
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a7/
%G ru
%F FPM_2007_13_3_a7
O. M. Katerinchuk. On $K$-large and generalized $K$-large Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 51-60. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a7/

[1] Krylov P. A., Pakhomova E. G., “Abelevy gruppy kak in'ektivnye moduli nad koltsami endomorfizmov”, Fundament. i prikl. mat., 4:4 (1998), 1365–1384 | MR | Zbl

[2] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[3] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl

[4] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht, 2003 | MR