On $K$-large and generalized $K$-large Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 51-60
The concepts of $K$-large and generalized $K$-large Abelian groups are introduced, and their main properties and interconnections are studied. We consider groups that are $K$-large (generalized $K$-large) with respect to the class of all groups and torsion-free groups. Main attention is paid to the case where $K$ consists of bounded $p$-groups for an infinite set of prime numbers $p$.
@article{FPM_2007_13_3_a7,
author = {O. M. Katerinchuk},
title = {On $K$-large and generalized $K$-large {Abelian} groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {51--60},
year = {2007},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a7/}
}
O. M. Katerinchuk. On $K$-large and generalized $K$-large Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 51-60. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a7/
[1] Krylov P. A., Pakhomova E. G., “Abelevy gruppy kak in'ektivnye moduli nad koltsami endomorfizmov”, Fundament. i prikl. mat., 4:4 (1998), 1365–1384 | MR | Zbl
[2] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974
[3] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl
[4] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht, 2003 | MR