csp-rings as a~generalization of rings of pseudo-rational numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 35-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ideals and factor rings of the so-called csp-rings are described, and modules over such rings are considered.
@article{FPM_2007_13_3_a4,
     author = {E. G. Zinoviev},
     title = {csp-rings as a~generalization of rings of pseudo-rational numbers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--38},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a4/}
}
TY  - JOUR
AU  - E. G. Zinoviev
TI  - csp-rings as a~generalization of rings of pseudo-rational numbers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 35
EP  - 38
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a4/
LA  - ru
ID  - FPM_2007_13_3_a4
ER  - 
%0 Journal Article
%A E. G. Zinoviev
%T csp-rings as a~generalization of rings of pseudo-rational numbers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 35-38
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a4/
%G ru
%F FPM_2007_13_3_a4
E. G. Zinoviev. csp-rings as a~generalization of rings of pseudo-rational numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 35-38. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a4/

[1] Krylov P. A., “Nasledstvennye koltsa endomorfizmov smeshannykh abelevykh grupp”, Sib. mat. zhurn., 43:1, 108–119 | MR | Zbl

[2] Krylov P. A., Pakhomova E. G., Podberezina E. I., “Ob odnom klasse smeshannykh abelevykh grupp”, Vestnik TGU, 269, 29–34

[3] Fomin A. A., “Some mixed Abelian groups as modules over the ring of pseudo-rational numbers”, Abelian Groups and Modules, Proc. of the Int. Conf. in Dublin (Ireland, August 10–14, 1998), Trends in Mathematics, eds. P. C. Eklof et al., Birkhäuser, Basel, 1999, 87–100 | MR | Zbl