Representations of the first degree of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 185-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of $\operatorname{Hom}(G,\operatorname{Aut}V)$, where $V$ is a vector space of dimension $1$ on a finite field $\mathbb{F}_{q}$, on the rational field $\mathbb{Q}$, on the field of real numbers $\mathbb{R}$, and on the field of complex numbers $\mathbb{C}$ is given. The description is given in each of these four cases for any Abelian group $G$.
@article{FPM_2007_13_3_a17,
     author = {A. M. Sebel'din and A. L. Sylla},
     title = {Representations of the first degree of {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--191},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a17/}
}
TY  - JOUR
AU  - A. M. Sebel'din
AU  - A. L. Sylla
TI  - Representations of the first degree of Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 185
EP  - 191
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a17/
LA  - ru
ID  - FPM_2007_13_3_a17
ER  - 
%0 Journal Article
%A A. M. Sebel'din
%A A. L. Sylla
%T Representations of the first degree of Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 185-191
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a17/
%G ru
%F FPM_2007_13_3_a17
A. M. Sebel'din; A. L. Sylla. Representations of the first degree of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 185-191. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a17/

[1] Grinshpon S. Ya., “O ravenstve nulyu gruppy gomomorfizmov abelevykh grupp”, Izv. vyssh. uchebn. zaved. Matematika, 1998, no. 9, 42–46 | MR | Zbl

[2] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[3] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977

[4] Sebeldin A. M., “Isomorphisme naturel des groupes des homomorphismes des groupes abéliens”, Ann. de L'IPGANC, Sér. A., 8 (1982), 155–158