Strictly purely correct torsion-free Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 165-183

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the concepts of polynomially periodic and polynomially split abelian groups are introduced and studied. These groups are considered as modules over the ring of integral polynomials. By using these concepts, a description of strictly purely correct polynomially split vector groups is obtained.
@article{FPM_2007_13_3_a16,
     author = {S. K. Rososhek},
     title = {Strictly purely correct torsion-free {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {165--183},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a16/}
}
TY  - JOUR
AU  - S. K. Rososhek
TI  - Strictly purely correct torsion-free Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 165
EP  - 183
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a16/
LA  - ru
ID  - FPM_2007_13_3_a16
ER  - 
%0 Journal Article
%A S. K. Rososhek
%T Strictly purely correct torsion-free Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 165-183
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a16/
%G ru
%F FPM_2007_13_3_a16
S. K. Rososhek. Strictly purely correct torsion-free Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 165-183. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a16/