Fuzzy linear dynamical systems over fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 147-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the problem of formalization of ways of describing fuzzy systems. A concept of fuzzy linearity for the class of dynamical systems is analyzed. Also we consider some properties of the fuzzy dynamical systems that are linear over fields.
@article{FPM_2007_13_3_a14,
     author = {S. G. Pushkov and V. A. Tyryshkina},
     title = {Fuzzy linear dynamical systems over fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--155},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a14/}
}
TY  - JOUR
AU  - S. G. Pushkov
AU  - V. A. Tyryshkina
TI  - Fuzzy linear dynamical systems over fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 147
EP  - 155
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a14/
LA  - ru
ID  - FPM_2007_13_3_a14
ER  - 
%0 Journal Article
%A S. G. Pushkov
%A V. A. Tyryshkina
%T Fuzzy linear dynamical systems over fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 147-155
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a14/
%G ru
%F FPM_2007_13_3_a14
S. G. Pushkov; V. A. Tyryshkina. Fuzzy linear dynamical systems over fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 147-155. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a14/

[1] Averkin A. N., Batyrshin I. Z., Blishun A. F. i dr., Nechetkie mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta, Nauka, M., 1986 | Zbl

[2] Zade L. A., Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii, Mir, M., 1976 | MR

[3] Mesarovich M., Takakhara Ya., Obschaya teoriya sistem: matematicheskie osnovy, Mir, M., 1978 | MR

[4] Pushkov S. G., “Ob obschei teorii nechetkikh sistem: globalnye sostoyaniya i nechetkaya globalnaya reaktsiya nechetkoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2001, no. 5, 105–109 | MR | Zbl

[5] Pushkov S. G., “K obschei teorii nechetkikh sistem: globalnye sostoyaniya, usloviya soglasovannosti i lineinost”, Vestn. Tomskogo gos. un-ta, 2002, no. 1, 169–174

[6] Zadeh L. A., “Fuzzy sets”, Inform. Control, 8 (1965), 338–353 | DOI | MR | Zbl