Fuzzy modules with respect to $t$-norm and some of their properties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 141-146
We introduce the concept of fuzzy submodule over a commutative ring with respect to a $t$-norm. Some properties of fuzzy submodules are investigated. In particular, we consider properties of intersection and direct product for fuzzy submodules.
@article{FPM_2007_13_3_a13,
author = {S. G. Pushkov},
title = {Fuzzy modules with respect to $t$-norm and some of their properties},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {141--146},
year = {2007},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a13/}
}
S. G. Pushkov. Fuzzy modules with respect to $t$-norm and some of their properties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 141-146. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a13/
[1] Abu Osman M. T., “On the direct product of fuzzy subgroups”, Fuzzy Sets and Systems, 12 (1984), 87–91 | DOI | MR | Zbl
[2] Lu T., Gu W., “Abelian fuzzy group and its properties”, Fuzzy Sets and Systems, 64 (1993), 415–420 | DOI | MR
[3] Malik D. S., Mordeson J. N., “Fuzzy direct sums of fuzzy rings”, Fuzzy Sets and Systems, 45 (1992), 83–91 | DOI | MR | Zbl
[4] Rosenfeld A., “Fuzzy groups”, J. Math. Anal. Appl., 35 (1971), 512–517 | DOI | MR | Zbl
[5] Zadeh L. A., “Fuzzy sets”, Inform. Control, 8 (1965), 338–353 | DOI | MR | Zbl