The group $\operatorname{Hom}(A,B)$ as an Artinian $\operatorname{E}(B)$- or $\operatorname{E}(A)$-module
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions of Artinianity of the homomorphism group $\operatorname{Hom}(A,B)$ as a module over the endomorphism ring of the Abelian group $B$ or $A$ are found.
@article{FPM_2007_13_3_a10,
     author = {P. A. Krylov and Y. I. Podberezina},
     title = {The group $\operatorname{Hom}(A,B)$ as an {Artinian} $\operatorname{E}(B)$- or $\operatorname{E}(A)$-module},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {81--96},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a10/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - Y. I. Podberezina
TI  - The group $\operatorname{Hom}(A,B)$ as an Artinian $\operatorname{E}(B)$- or $\operatorname{E}(A)$-module
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 81
EP  - 96
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a10/
LA  - ru
ID  - FPM_2007_13_3_a10
ER  - 
%0 Journal Article
%A P. A. Krylov
%A Y. I. Podberezina
%T The group $\operatorname{Hom}(A,B)$ as an Artinian $\operatorname{E}(B)$- or $\operatorname{E}(A)$-module
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 81-96
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a10/
%G ru
%F FPM_2007_13_3_a10
P. A. Krylov; Y. I. Podberezina. The group $\operatorname{Hom}(A,B)$ as an Artinian $\operatorname{E}(B)$- or $\operatorname{E}(A)$-module. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 81-96. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a10/

[1] Krylov P. A., Podberezina E. I., “Stroenie smeshannykh abelevykh grupp s neterovymi koltsami endomorfizmov”, Abelevy gruppy i moduli, Tomsk, 1994, 121–129 | MR

[2] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[3] Arnold D. M., Finite Rank Torsion-Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, 1982 | MR | Zbl

[4] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic Publishers, Dordrecht, 2003 | MR