Reduced Rickart semirings and their functional representations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 205-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider reduced semirings with supplementary conditions of annihilators, namely these are Rickart and weakly Rickart semirings. The main aim of the paper is to study functional representations of semirings. We build two sheaves of semirings and prove that a reduced Rickart semiring is presented by sections of these sheaves.
@article{FPM_2007_13_2_a9,
     author = {V. V. Chermnykh},
     title = {Reduced {Rickart} semirings and their functional representations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a9/}
}
TY  - JOUR
AU  - V. V. Chermnykh
TI  - Reduced Rickart semirings and their functional representations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 205
EP  - 215
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a9/
LA  - ru
ID  - FPM_2007_13_2_a9
ER  - 
%0 Journal Article
%A V. V. Chermnykh
%T Reduced Rickart semirings and their functional representations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 205-215
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a9/
%G ru
%F FPM_2007_13_2_a9
V. V. Chermnykh. Reduced Rickart semirings and their functional representations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a9/

[8] Bredon G., Teoriya puchkov, Nauka, M., 1988

[9] Vechtomov E. M., Koltsa nepreryvnykh funktsii na topologicheskikh prostranstvakh. Izbrannye temy, MPGU, M., 1992

[10] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982

[11] Chermnykh V. V., “Puchkovye predstavleniya polukolets”, Uspekhi mat. nauk, 48:5 (1993), 185–186

[12] Chermnykh V. V., Polukoltsa, Vyatskii gos. ped. un-t, Kirov, 1997

[13] Artamonova I. I., Chermnykh V. V., Mikhalev A. V., Varankina V. I., Vechtomov E. M., “Semirings: Sheaves, continuous functions, multiplicative structure”, Proc. of Conf. “Semigroups with Applications Including Semigroup Rings”, St. Petersburg, 1999, 23–58 | Zbl

[14] Cornish W. H., “0-ideals, congruences and sheaf representations of distributive lattices”, Rev. Roumaine Math. Pures Appl., 22:8 (1977), 200–215 | MR

[15] Davey B. A., “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134:4 (1973), 275–290 | DOI | MR | Zbl