On definability of a~periodic $\mathrm{EndE}^+$-group by its endomorphism group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 123-131
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbf A$ be a class of Abelian groups, $A\in\mathbf A$, and $\mathrm{End}(A)$ be the additive endomorphism group of the group $A$. The group $A$ is said to be defined by its endomorphism group in the class $\mathbf B\supseteq\mathbf A$ if for every group $B\in \mathbf B$ such that $\mathrm{End}(B)\cong\mathrm{End}(A)$ the isomorphism $B\cong A$ holds. The paper considers the problem of definability of a periodic Abelian group $A$ such that $\mathrm{End}\bigl(\mathrm{End}(A)\bigr)\cong\mathrm{End}(A)$. The classes of periodical Abelian groups, of divisible Abelian groups, of reduced Abelian groups, of nonreduced Abelian groups, and of all Abelian groups are investigated in this paper.
@article{FPM_2007_13_2_a3,
author = {E. M. Kolenova},
title = {On definability of a~periodic $\mathrm{EndE}^+$-group by its endomorphism group},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {123--131},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a3/}
}
TY - JOUR
AU - E. M. Kolenova
TI - On definability of a~periodic $\mathrm{EndE}^+$-group by its endomorphism group
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2007
SP - 123
EP - 131
VL - 13
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a3/
LA - ru
ID - FPM_2007_13_2_a3
ER -
E. M. Kolenova. On definability of a~periodic $\mathrm{EndE}^+$-group by its endomorphism group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 123-131. http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a3/