Differential standard bases under composition
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 109-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Hoon Hong's theorem on Gröbner bases under composition to the case of differential standard bases in the ordinary ring of differential polynomials $\mathcal F\{y\}$. In particular, we prove that some ideals have finite differential standard bases. We construct special orderings on differential monomials such that ideals generated by some power of a quasi-linear polynomial acquire finite differential standard bases.
@article{FPM_2007_13_1_a6,
     author = {A. I. Zobnin},
     title = {Differential standard bases under composition},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {109--134},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a6/}
}
TY  - JOUR
AU  - A. I. Zobnin
TI  - Differential standard bases under composition
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 109
EP  - 134
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a6/
LA  - ru
ID  - FPM_2007_13_1_a6
ER  - 
%0 Journal Article
%A A. I. Zobnin
%T Differential standard bases under composition
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 109-134
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a6/
%G ru
%F FPM_2007_13_1_a6
A. I. Zobnin. Differential standard bases under composition. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 109-134. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a6/

[1] Arzhantsev I. V., Bazisy Grebnera i sistemy algebraicheskikh uravnenii, MTsNMO, M., 2003

[2] Zobnin A. I., “O standartnykhbaz isakhv koltse differentsialnykhmn ogochlenov”, Fundament. i prikl. mat., 9:3 (2003), 89–102 | MR

[3] Zobnin A. I., Kondrateva M. V., “Zadacha prinadlezhnosti differentsialnomu idealu, porozhdennomu kompozitsiei mnogochlenov”, Programmirovanie, 32:3 (2006), 3–9 | MR

[4] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[5] Latyshev V. N., Kombinatornaya teoriya kolets. Standartnye bazisy, Izd-vo Mosk. un-ta, M., 1988

[6] Pankratev E. V., “Standartnye bazisy v differentsialnoi algebre”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2003, no. 3, 48–56

[7] Trushin D. V., Ideal separant v koltse differentsialnykh mnogochlenov, Preprint, 2006

[8] Becker T., Weispfenning W., Gröbner Bases. A Computational Approach to Commutative Algebra, Grad. Texts Math., 141, Springer, New York, 1993 | MR | Zbl

[9] Carrà Ferro G., “Gröbner bases and differential algebra”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 5th Int. Conf., AAECC-5 (Menorca/Spain, 1987), Lect. Notes Comput. Sci., 356, Springer, Berlin, 1989, 129–140 | MR

[10] Carrà Ferro G., “Differential Gröbner bases in one variable and in the partial case”, Math. Comput. Modelling, 25:8–9 (1997), 1–10 | MR | Zbl

[11] Gallo G., Mishra B., Ollivier F., “Some constructions in rings of differential polynomials”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 9th Int. Symp., AAECC-9 (New Orleans/LA (USA), 1991), Lect. Notes Comput. Sci., 539, Springer, Berlin, 1991, 171–182 | MR

[12] Gutierrez J., San Miguel R. R., “Reduces Gröbner bases under composition”, J. Symbolic Comput., 26:4 (1998), 433–444 | DOI | MR | Zbl

[13] Hong H., “Gröbner basis under composition. I”, J. Symbolic Comput, 25:5 (1998), 643–663 | DOI | MR | Zbl

[14] Hong H., “Gröbner basis under composition. II”, Proc. of the 1996 Int. Symp. on Symbolic and Algebraic Computation, ISSAC '96 (Zurich, Switzerland, July 24–26, 1996), ed. Y. N. Lakshman, ACM Press, 1996, 79–85 | Zbl

[15] Hubert E., “Notes on triangular sets and triangulation-decomposition algorithms. I: Polynomial systems”, Symbolic and Numerical Scientific Computation, Second Int. Conf., SNSC 2001, Revised papers (Hagenberg, Austria, September 12–14, 2001), Lect. Notes Comput. Sci., 2630, ed. F. Winkler,, Springer, Berlin, 2003, 1–39 | MR | Zbl

[16] Hubert E., “Notes on triangular sets and triangulation-decomposition algorithms. II: Differential systems”, Symbolic and Numerical Scientific Computation, Second Int. Conf., SNSC 2001, Revised papers (Hagenberg, Austria, September 12–14, 2001), Lect. Notes Comput. Sci., 2630, ed. F. Winkler,, Springer, Berlin, 2003, 40–87 | MR | Zbl

[17] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[18] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1999 | MR | Zbl

[19] Levi H., “On the structure of differential polynomials and on their theory of ideals”, Trans. Amer. Math. Soc., 51 (1942), 532–568 | DOI | MR | Zbl

[20] Mansfield E., Differential Gröbner bases, Ph.D. Thesis, Univ. of Sydney, 1991

[21] Ollivier F., Le problème de l'identifiabilité structurelle globale, These de doctorat, Paris, 1990

[22] Ollivier F., “Standard bases of differential ideals”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 8th Int. Conf., AAECC-8 (Tokyo/Jap., 1990), Lect. Notes Comput. Sci., 508, Springer, Berlin, 1991, 304–321 | MR

[23] Ritt J. F., Differential Algebra, Colloquium Publications, 33, Amer. Math. Soc., New York, 1950 | MR | Zbl

[24] Robbiano L., “Term orderings on the polynomial ring”, Computer Algebra, EUROCAL '85, Proc. Eur. Conf., vol. 2 (Linz/Austria, 1985), Lect. Notes Comput. Sci., 204, Springer, Berlin, 1985, 513–517 | MR

[25] Robbiano L., “On the theory of graded structures”, J. Symbolic Comput., 2 (1986), 139–170 | DOI | MR | Zbl

[26] Zobnin A., “Essential properties of admissible orderings and rankings”, Proc. of the 64th Workshop on General Algebra “64. Arbeitstagung Allgemeine Algebra” (Olomouc, Czech Republic, May 30–June 2, 2002) and of the 65th Workshop on General Algebra '65. Arbeitstagung Allgemeine Algebra (Potsdam, Germany, March 21–23, 2003), Contrib. Gen. Algebra, 14, ed. I. Chajda, Verlag Johannes Heyn, Klagenfurt, 2004, 205–221 | MR | Zbl

[27] Zobnin A., “On testing the membership to differential ideals”, Proc. of CASC-2004 (St. Petersburg, 2004), 485–496

[28] Zobnin A., “Admissible orderings and finiteness criteria for differential standard bases”, Symbolic and Algebraic Computation, Int. Symp. ISSAC 2005, Proceedings (Beijing, China, July 24–27, 2005), ed. M. Kauers, ACM Press, 2005, 365–372 | MR

[29] Zobnin A., “Some results on differential Gröbner bases”, Proc. of A3L-2005, Conf. in Honor of the 60th Birthday of Volker Weispfenning, 2005, 309–314