Stochastic matrices and the assessment of the vulnerability of automated systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 61-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this article is to consider the theoretical basis of automated system vulnerability scanning (assessment) process and to prove the possibility of determining the internal state distribution based on conducting the scanning process. According to international information security standards, the scanning process is called the vulnerability assessment process. Conducting this process and the existence of the required technical resources is a necessary condition for creating effective information security systems.
@article{FPM_2007_13_1_a4,
     author = {A. S. Vydrin and A. V. Mikhalev},
     title = {Stochastic matrices and the assessment of the vulnerability of automated systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {61--99},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a4/}
}
TY  - JOUR
AU  - A. S. Vydrin
AU  - A. V. Mikhalev
TI  - Stochastic matrices and the assessment of the vulnerability of automated systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 61
EP  - 99
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a4/
LA  - ru
ID  - FPM_2007_13_1_a4
ER  - 
%0 Journal Article
%A A. S. Vydrin
%A A. V. Mikhalev
%T Stochastic matrices and the assessment of the vulnerability of automated systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 61-99
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a4/
%G ru
%F FPM_2007_13_1_a4
A. S. Vydrin; A. V. Mikhalev. Stochastic matrices and the assessment of the vulnerability of automated systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 61-99. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a4/

[1] Bukharaev R. G., Osnovy teorii veroyatnostnykh avtomatov, Nauka, M., 1985 | MR | Zbl

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR | Zbl

[3] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Editorial URSS, M., 2004 | Zbl

[4] Shiryaev A. N., Veroyatnost-1. Veroyatnost-2, MTsNMO, M., 2004

[5] Bru R., Elsner L., Neumann M., “Convergence of infinite products of matrices and inner-outer iteration schemes”, Electron. Trans. Numer. Anal., 2 (1994), 183–193 | MR | Zbl