On integrability of the Euler--Poisson equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 45-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a special case of the Euler–Poisson system of equations, describing the motion of a rigid body around a fixed point. We find 44 sets of stationary solutions near which the system is locally integrable. Ten of them are real. We study also the number of these complex stationary solutions in 3-dimensional invariant manifolds of the system. We find that the number is 4, 2, 1, or 0.
@article{FPM_2007_13_1_a3,
     author = {A. D. Bruno and V. F. Edneral},
     title = {On integrability of the {Euler--Poisson} equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a3/}
}
TY  - JOUR
AU  - A. D. Bruno
AU  - V. F. Edneral
TI  - On integrability of the Euler--Poisson equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 45
EP  - 59
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a3/
LA  - ru
ID  - FPM_2007_13_1_a3
ER  - 
%0 Journal Article
%A A. D. Bruno
%A V. F. Edneral
%T On integrability of the Euler--Poisson equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 45-59
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a3/
%G ru
%F FPM_2007_13_1_a3
A. D. Bruno; V. F. Edneral. On integrability of the Euler--Poisson equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a3/

[1] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. MMO, 25 (1971), 119–262 | Zbl

[2] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | Zbl

[3] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998 | MR | Zbl

[4] Bryuno A. D., Teoriya normalnykh form uravnenii Eilera–Puassona, Preprint No 100 Instituta prikladnoi matematiki im. M. V. Keldysha RAN, M., 2005 | MR

[5] Golubev V. V., Lektsii po integrirovaniyu uravnenii dvizheniya tyazhëlogo tvërdogo tela okolo nepodvizhnoi tochki, Gostekhizdat, M., 1953 | MR | Zbl

[6] Ziglin S. L., “Vetvlenie reshenii i nesuschestvovanie pervykh integralov v gamiltonovoi mekhanike”, Funkts. analiz i ego pril., 16:3 (1982), 30–40 ; 17:1 (1983), 8–23 | MR | Zbl | MR | Zbl

[7] Bruno A. D., Edneral V. F., “Normal forms and integrability of ODE systems”, Computer Algebra in Scientific Computing, 8th Int. Workshop, CASC 2005, Proceedings (Kalamata, Greece, September 12–16, 2005), Lect. Notes Comput. Sci., 3718, ed. V. G. Ganzha, Springer, Berlin, 2005, 379–386 | MR | Zbl