Determination of a class of countable rank torsion-free Abelian groups by their endomorphism rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Determination, up to near isomorphism, of countable rank block-rigid local almost completely decomposable groups of ring type with cyclic regulator quotient by their endomorphism rings in this class has been proved.
@article{FPM_2007_13_1_a2,
     author = {E. A. Blagoveshchenskaya},
     title = {Determination of a class of countable rank torsion-free {Abelian} groups by their endomorphism rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a2/}
}
TY  - JOUR
AU  - E. A. Blagoveshchenskaya
TI  - Determination of a class of countable rank torsion-free Abelian groups by their endomorphism rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 31
EP  - 43
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a2/
LA  - ru
ID  - FPM_2007_13_1_a2
ER  - 
%0 Journal Article
%A E. A. Blagoveshchenskaya
%T Determination of a class of countable rank torsion-free Abelian groups by their endomorphism rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 31-43
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a2/
%G ru
%F FPM_2007_13_1_a2
E. A. Blagoveshchenskaya. Determination of a class of countable rank torsion-free Abelian groups by their endomorphism rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a2/

[1] Blagoveschenskaya E., “Avtomorfizmy kolets endomorfizmov blochno-zhestkikh pochti vpolne razlozhimykh grupp”, Fundament. i prikl. mat., 10:2 (2004), 23–50

[2] Blagoveschenskaya E., “Pryamye razlozheniya lokalno pochti vpolne razlozhimykh grupp schetnogo ranga”, Chebyshevskii sb., 6:4 (2005) | MR

[3] Blagoveschenskaya E., “Dvoistvennaya struktura pochti vpolne razlozhimykh grupp i ikh kolets endomorfizmov”, Uspekhi mat. nauk, 61:2 (2006), 159–160 | MR | Zbl

[4] Blagoveschenskaya E. A., “Dvoistvennost teorii pochti vpolne razlozhimykh grupp i ikh kolets endomorfizmov”, Nauchno-tekhnicheskie vedomosti SPbGPU, 1 (2006), 69–72 | Zbl

[5] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial, M., 2006

[6] Fuks L., Beskonechnye abelevy gruppy, t. 1, 2, Mir, M., 1974, 1977

[7] Arnold D., Finite Rank Torsion Free Abelian Groups and Rings, Lect. Notes Math., 931, Springer, 1982 | MR | Zbl

[8] Blagoveshchenskaya E., “Dualities between almost completely decomposable groups and their endomorphism rings”, J. Math. Sci., 131:5 (2005), 5948–5961 | DOI | MR | Zbl

[9] Blagoveshchenskaya E., Göbel R., “Classification and direct decompositions of some Butler groups of countable rank”, Comm. Algebra, 30:7 (2002), 3403–3427 | DOI | MR | Zbl

[10] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer–Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273 (2001), 85–93 | MR | Zbl

[11] Mader A., Almost Completely Decomposable Abelian Groups, Algebra, Logic and Applications, 13, Gordon and Breach, Amsterdam, 1999