Abelian groups as endomorphic modules over their endomorphism ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 229-233
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be an associative ring with a unit and $N$ be a left $R$-module. The set $M_R(N)=\{f\colon N\to N\mid f(rx)=rf(x),\ r\in R,\ x\in N\}$ is a near-ring with respect to the operations of addition and composition and contains the ring $E_R(N)$ of all endomorphisms of the $R$-module $N$. The $R$-module $N$ is endomorphic if $M_R(N)=E_R(N)$. We call an Abelian group endomorphic if it is an endomorphic module over its endomorphism ring. In this paper, we find endomorphic Abelian groups in the classes of all separable torsion-free groups, torsion groups, almost completely decomposable torsion-free groups, and indecomposable torsion-free groups of rank 2.
@article{FPM_2007_13_1_a13,
author = {D. S. Chistyakov and O. V. Ljubimtsev},
title = {Abelian groups as endomorphic modules over their endomorphism ring},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {229--233},
year = {2007},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a13/}
}
TY - JOUR AU - D. S. Chistyakov AU - O. V. Ljubimtsev TI - Abelian groups as endomorphic modules over their endomorphism ring JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 229 EP - 233 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a13/ LA - ru ID - FPM_2007_13_1_a13 ER -
D. S. Chistyakov; O. V. Ljubimtsev. Abelian groups as endomorphic modules over their endomorphism ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 229-233. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a13/
[1] Krylov P. A., Mikhalëv A. V., Tuganbaev A. A., Svyazi abelevykh grupp i ikh kolets endomorfizmov, Tomskii gosudarstvennyi universitet, Tomsk, 2002
[2] Turmanov M. A., “Endochistye podmoduli abelevykh grupp bez krucheniya ranga 2”, Abelevy gruppy i moduli, 1990, no. 9, 119–124 | MR | Zbl
[3] Fuks L., Beskonechnye abelevy gruppy, Mir, M., 1974; 1977 | MR | MR | Zbl
[4] Hausen J., Johnson J. A., “Centralizer near-rings that are rings”, J. Austral. Math. Soc. Ser. A, 59 (1995), 173–183 | DOI | MR | Zbl
[5] Maxson C. J., van der Walt A. P. J., “Centralizer near-rings over free ring modules”, J. Austral. Math. Soc. Ser. A, 50 (1991), 279–296 | DOI | MR | Zbl