Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_8_a8, author = {A. V. Mikhalev and I. A. Pinchuk}, title = {Steinberg conformal superalgebras}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {189--196}, publisher = {mathdoc}, volume = {12}, number = {8}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a8/} }
A. V. Mikhalev; I. A. Pinchuk. Steinberg conformal superalgebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 189-196. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a8/
[2] Milnor Dzh., Vvedenie v algebraicheskuyu K-teoriyu, Mir, M., 1974
[3] Mikhalev A. V., Pinchuk I. A., “Universalnoe tsentralnoe rasshirenie odnoi osoboi superalgebry Li s nevyrozhdennoi formoi Killinga”, Universalnaya algebra i ee prilozheniya, Peremena, Volgograd, 2000, 201–221
[4] Mikhalev A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya superalgebr Li”, Formalnye stepennye ryady i algebraicheskaya kombinatorika, Tez. 12-i Mezhd. konf., M., 2000, 49–50
[5] Mikhalev A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya superalgebr Li”, Tr. seminara im. I. G. Petrovskogo, 2002, no. 22, 261–282
[6] Mikhalev A. V., Pinchuk I. A., “Avtomorfizmy i differentsirovaniya konformnykh algebr Li i ikh tsentralnye rasshireniya”, Chebyshevskii sb., 5:4 (2004), 98–114 | MR | Zbl
[7] Mikhalev A. V., Pinchuk I. A., “Konformnye algebry Steinberga”, Mat. sb., 196:5 (2005), 32–52
[8] Mikhalev A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya konformnykh algebr Li”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2005, no. 1, 26–31
[9] Mikhalev A. V., Pinchuk I. A., “Unitarnye konformnye algebry Li–Steinberga”, Fundament. i prikl. mat., 11:2 (2005), 135–155 | Zbl
[10] Bloch S., “The dilogarithm and extensions of Lie algebras”, Algebraic K-Theory, Proc. Conf. (Evanston 1980), Lect. Notes Math., 854, Springer, 1981, 1–23 | MR
[11] Bokut' L. A., Fong Y., Ke W.-F., “Gröbner–Shirshov bases and composition lemma for associative conformal algebras: An example Combinatorial and Computational Algebra”, Int. Conf. on Combinatorial and Computational Algebra (May 24–29, 1999, Hong Kong, China), Contemp. Math., 264, ed. K. Y. Chan, Amer. Math. Soc., Providence, 2000, 63–90 | MR | Zbl
[12] Iohara K., Kogti Y., “Central extensions of Lie superalgebras”, Comment. Math. Helv., 76 (2001), 110–154 | DOI | MR | Zbl
[13] Kac V., “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl
[14] Kac V., Vertex Algebras for Beginners, Univ. Lect. Ser., 10, Amer. Math. Soc., Providence, 1996 | MR | Zbl
[15] Kassel C., “Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra”, J. Pure Appl. Algebra, 34 (1984), 265–275 | DOI | MR | Zbl
[16] Kassel C., Loday J.-L., “Extensions centrales d'algèbres de Lie”, Ann. Inst. Fourier, 32 (1982), 119–142 | MR | Zbl
[17] Mikhalev A. V., Pinchuk I. A., “Universal central extensions of the matrix Lie superalgebras $\mathrm{sl}(m,n,A)$”, Combinatorial and Computational Algebra., Int. Conf. on Combinatorial and Computational Algebra (May 24–29, 1999, Hong Kong, China), Contemp. Math., 264, ed. K. Y. Chan, Amer. Math. Soc. 2000, Providence, 111–125 | MR | Zbl
[18] Neher E., “An introduction to universal central extensions of Lie superalgebras”, Groups, Rings, Lie and Hopf Algebras, Based on the Int. Workshop (St. John's, Canada, May 28–June 1, 2001), Math. Its Appl., 555, ed. Yu. Bahturin, Kluwer Academic, Dordrecht, 2003, 141–166 | MR | Zbl
[19] Steinberg R., “Générateurs, rélations et revêtements de groupes algébriques”, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librarie Universitaire, Louvain, 1962, 113–127 | MR