Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 121-158

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that any automorphism of a Sylow $p$-subgroup of the Chevalley group over the ring $\mathbb Z_{p^m}$ (where $p$ is prime and $m\geq 1$) is a product of graph, inner, diagonal, and hypercentral automorphisms.
@article{FPM_2006_12_8_a5,
     author = {S. G. Kolesnikov},
     title = {Automorphisms of {Sylow} $p$-subgroups of {Chevalley} groups over $p$-primary residue rings of integers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--158},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/}
}
TY  - JOUR
AU  - S. G. Kolesnikov
TI  - Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 121
EP  - 158
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/
LA  - ru
ID  - FPM_2006_12_8_a5
ER  - 
%0 Journal Article
%A S. G. Kolesnikov
%T Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 121-158
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/
%G ru
%F FPM_2006_12_8_a5
S. G. Kolesnikov. Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 121-158. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/