Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 121-158
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that any automorphism of a Sylow $p$-subgroup of the Chevalley group over the ring $\mathbb Z_{p^m}$ (where $p$ is prime and $m\geq 1$) is a product of graph, inner, diagonal, and hypercentral automorphisms.
@article{FPM_2006_12_8_a5,
author = {S. G. Kolesnikov},
title = {Automorphisms of {Sylow} $p$-subgroups of {Chevalley} groups over $p$-primary residue rings of integers},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {121--158},
publisher = {mathdoc},
volume = {12},
number = {8},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/}
}
TY - JOUR AU - S. G. Kolesnikov TI - Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 121 EP - 158 VL - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/ LA - ru ID - FPM_2006_12_8_a5 ER -
%0 Journal Article %A S. G. Kolesnikov %T Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 121-158 %V 12 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/ %G ru %F FPM_2006_12_8_a5
S. G. Kolesnikov. Automorphisms of Sylow $p$-subgroups of Chevalley groups over $p$-primary residue rings of integers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 121-158. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a5/