Regularity conditions for semigroups of isotone transformations of countable chains
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 97-104

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a linearly ordered set (a chain), $O(\Gamma)$ be the semigroup of all isotone transformations of $\Gamma$ (i.e., order-preserving transformations). We find some necessary and some sufficient conditions on the chain $\Gamma$ for the semigroup $O(\Gamma)$ to be regular. For example, if $\Gamma$ is a complete chain with the maximal element and the minimal one, then $O(\Gamma)$ is regular. In particular, $O(\Gamma)$ is regular if $\Gamma$ is finite. We find necessary and sufficient conditions for the regularity of $O(\Gamma)$ in the case where $\Gamma$ is countable.
@article{FPM_2006_12_8_a3,
     author = {V. I. Kim and I. B. Kozhukhov},
     title = {Regularity conditions for semigroups of isotone transformations of countable chains},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/}
}
TY  - JOUR
AU  - V. I. Kim
AU  - I. B. Kozhukhov
TI  - Regularity conditions for semigroups of isotone transformations of countable chains
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 97
EP  - 104
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/
LA  - ru
ID  - FPM_2006_12_8_a3
ER  - 
%0 Journal Article
%A V. I. Kim
%A I. B. Kozhukhov
%T Regularity conditions for semigroups of isotone transformations of countable chains
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 97-104
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/
%G ru
%F FPM_2006_12_8_a3
V. I. Kim; I. B. Kozhukhov. Regularity conditions for semigroups of isotone transformations of countable chains. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 97-104. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/