Regularity conditions for semigroups of isotone transformations of countable chains
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 97-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a linearly ordered set (a chain), $O(\Gamma)$ be the semigroup of all isotone transformations of $\Gamma$ (i.e., order-preserving transformations). We find some necessary and some sufficient conditions on the chain $\Gamma$ for the semigroup $O(\Gamma)$ to be regular. For example, if $\Gamma$ is a complete chain with the maximal element and the minimal one, then $O(\Gamma)$ is regular. In particular, $O(\Gamma)$ is regular if $\Gamma$ is finite. We find necessary and sufficient conditions for the regularity of $O(\Gamma)$ in the case where $\Gamma$ is countable.
@article{FPM_2006_12_8_a3,
     author = {V. I. Kim and I. B. Kozhukhov},
     title = {Regularity conditions for semigroups of isotone transformations of countable chains},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/}
}
TY  - JOUR
AU  - V. I. Kim
AU  - I. B. Kozhukhov
TI  - Regularity conditions for semigroups of isotone transformations of countable chains
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 97
EP  - 104
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/
LA  - ru
ID  - FPM_2006_12_8_a3
ER  - 
%0 Journal Article
%A V. I. Kim
%A I. B. Kozhukhov
%T Regularity conditions for semigroups of isotone transformations of countable chains
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 97-104
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/
%G ru
%F FPM_2006_12_8_a3
V. I. Kim; I. B. Kozhukhov. Regularity conditions for semigroups of isotone transformations of countable chains. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 97-104. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/

[7] Aizenshtat A. Ya., “Opredelyayuschie sootnosheniya polugruppy endomorfizmov konechnogo lineino uporyadochennogo mnozhestva”, Sib. mat. zhurn., 3:2 (1962), 161–169 | MR | Zbl

[8] Vazhenin Yu. M., “Elementarnye svoistva polugrupp preobrazovanii uporyadochennykh mnozhestv”, Algebra i logika, 7:3 (1970), 339–347 | MR | Zbl

[9] Kim V. I., Kozhukhov I. B., “Regulyarnye polugruppy izotonnykh preobrazovanii” (to appear)

[10] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, t. 1, Mir, M., 1972

[11] Lyapin E. S., “Abstraktnaya kharakteristika klassa polugrupp endomorfizmov sistem obschego vida”, Mat. sb., 70(112):2 (1966), 173–179

[12] Skornyakov L. A., “O monoidakh izotonnykh otobrazhenii”, Mat. sb., 123(165):1 (1984), 50–68 | MR

[13] Higgins P. M., Mitchell J. D., Ruškuc N., “Generating the full transformation semigroup using order preserving mappings”, Glasgow Math. J., 45 (2003), 557–566 | DOI | MR | Zbl

[14] Krokhin A., Larose B., “A monoidal interval of isotone clones on a finite chain”, Acta Sci. Math. (Szeged), 68:1–2 (2001), 37–62 | MR

[15] Laradji A., Umar A., “Combinatorial results for semigroups of order-preserving partial transformations”, J. Algebra, 278:1 (2004), 342–359 | DOI | MR | Zbl

[16] Larose B., “A completeness criterion for isotone operations on a finite chain”, Acta Sci. Math. (Szeged), 59:3–4 (1994), 319–356 | MR | Zbl

[17] Schein B. M., “Products of idempotent order-preserving transformations of arbitrary chains”, Semigroup Forum, 11:1 (1975), 297–309 | DOI | MR

[18] Thornton M. C., “Semigroups of isotone selfmaps on partially ordered sets”, J. London Math. Soc., 14:3 (1976), 545–553 | DOI | MR | Zbl

[19] Umar A., “On the ranks of certain finite semigroups of order-decreasing transformations”, Portugal. Math., 53:1 (1996), 23–34 | MR | Zbl