Regularity conditions for semigroups of isotone transformations of countable chains
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 97-104
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Gamma$ be a linearly ordered set (a chain), $O(\Gamma)$ be the semigroup of all isotone transformations of $\Gamma$ (i.e., order-preserving transformations).
We find some necessary and some sufficient conditions on the chain $\Gamma$ for the semigroup $O(\Gamma)$ to be regular. For example, if $\Gamma$ is a complete chain with the maximal element and the minimal one, then $O(\Gamma)$ is regular. In particular, $O(\Gamma)$ is regular if $\Gamma$ is finite. We find necessary and sufficient conditions for the regularity of $O(\Gamma)$ in the case where $\Gamma$ is countable.
@article{FPM_2006_12_8_a3,
author = {V. I. Kim and I. B. Kozhukhov},
title = {Regularity conditions for semigroups of isotone transformations of countable chains},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {97--104},
publisher = {mathdoc},
volume = {12},
number = {8},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/}
}
TY - JOUR AU - V. I. Kim AU - I. B. Kozhukhov TI - Regularity conditions for semigroups of isotone transformations of countable chains JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 97 EP - 104 VL - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/ LA - ru ID - FPM_2006_12_8_a3 ER -
V. I. Kim; I. B. Kozhukhov. Regularity conditions for semigroups of isotone transformations of countable chains. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 97-104. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a3/