Finite Gr\"obner basis algebra with unsolvable problem of zero divisors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents a sample construction of an algebra with the ideal of relations defined by a finite Gröbner basis for which the question whether this element is a zero divisor is algorithmically unsolvable. This gives the negative answer to a question raised by V. N. Latyshev.
@article{FPM_2006_12_8_a2,
     author = {I. A. Ivanov-Pogodaev},
     title = {Finite {Gr\"obner} basis algebra with unsolvable problem of zero divisors},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a2/}
}
TY  - JOUR
AU  - I. A. Ivanov-Pogodaev
TI  - Finite Gr\"obner basis algebra with unsolvable problem of zero divisors
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 79
EP  - 96
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a2/
LA  - ru
ID  - FPM_2006_12_8_a2
ER  - 
%0 Journal Article
%A I. A. Ivanov-Pogodaev
%T Finite Gr\"obner basis algebra with unsolvable problem of zero divisors
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 79-96
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a2/
%G ru
%F FPM_2006_12_8_a2
I. A. Ivanov-Pogodaev. Finite Gr\"obner basis algebra with unsolvable problem of zero divisors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 79-96. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a2/

[1] Belov A. Ya., “Lineinye rekurrentnye uravneniya na dereve”, Mat. zametki, 78:5 (2005), 643–651 | MR | Zbl

[2] Iyudu N. K., “Algoritmicheskaya razreshimost problemy raspoznavaniya delitelei nulya v odnom klasse algebr”, Fundament. i prikl. mat., 1:2 (1995), 541–544 | MR | Zbl

[3] Iyudu N. K., Standartnye bazisy i raspoznavaemost svoistv algebr, zadannykh kopredstavleniem, Dis. ... kand. fiz.-mat. nauk, M., 1996 | Zbl

[4] Piontkovskii D. I., “Bazis Grëbnera i kogerentnost monomialnoi assotsiativnoi algebry”, Fundament. i prikl. mat., 2:2 (1996), 501–509 | MR | Zbl

[5] Piontkovskii D. I., “Nekommutativnye bazisy Grëbnera, kogerentnost assotsiativnykh algebr i delimost v polugruppakh”, Fundament. i prikl. mat., 7:2 (2001), 495–513 | MR | Zbl

[6] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 57, VINITI, M., 1990, 5–177 | MR

[7] Belov A. J., Borisenko V. V., Latyshev V. N., Monomial Algebras, Plenum, New York, 1997

[8] Bergman G., “The diamond lemma for ring theory”, Adv. Math., 29:2 (1978), 178–218 | DOI | MR | Zbl

[9] Gateva-Ivanova T., Latyshev V., “On recognisable properties of associative algebras”, J. Symbolic Comput., 6:2/3 (1988), 371–388 | DOI | MR | Zbl

[10] Minsky M. L., Computation: Finite and Infinite Machines, 1967 | MR