The Jacobson radical and Laurent series rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 243-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a large class of coefficient rings strictly containing all right or left invariant rings, a complete description of the Jacobson radical of Laurent series rings is obtained.
@article{FPM_2006_12_8_a14,
     author = {D. A. Tuganbaev},
     title = {The {Jacobson} radical and {Laurent} series rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {243--246},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a14/}
}
TY  - JOUR
AU  - D. A. Tuganbaev
TI  - The Jacobson radical and Laurent series rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 243
EP  - 246
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a14/
LA  - ru
ID  - FPM_2006_12_8_a14
ER  - 
%0 Journal Article
%A D. A. Tuganbaev
%T The Jacobson radical and Laurent series rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 243-246
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a14/
%G ru
%F FPM_2006_12_8_a14
D. A. Tuganbaev. The Jacobson radical and Laurent series rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 243-246. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a14/

[1] Sonin K. I., Koltsa loranovskikh ryadov, Dis. ... kand. fiz.-mat. nauk, M., 1998

[2] Tuganbaev A. A., “Radikal Dzhekobsona koltsa ryadov Lorana”, Fundament. i prikl. mat., 12:2 (2006), 209–215 | MR

[3] Tuganbaev D. A., “Polulokalnye distributivnye koltsa kosykh ryadov Lorana”, Fundament. i prikl. mat., 6:3 (2000), 913–921 | MR