Modules with many direct summands
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 233-241

Voir la notice de l'article provenant de la source Math-Net.Ru

We study rings over which all right modules are $I_0$-modules.
@article{FPM_2006_12_8_a13,
     author = {A. A. Tuganbaev},
     title = {Modules with many direct summands},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {233--241},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a13/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Modules with many direct summands
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 233
EP  - 241
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a13/
LA  - ru
ID  - FPM_2006_12_8_a13
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Modules with many direct summands
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 233-241
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a13/
%G ru
%F FPM_2006_12_8_a13
A. A. Tuganbaev. Modules with many direct summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 233-241. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a13/