Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_8_a13, author = {A. A. Tuganbaev}, title = {Modules with many direct summands}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {233--241}, publisher = {mathdoc}, volume = {12}, number = {8}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a13/} }
A. A. Tuganbaev. Modules with many direct summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 233-241. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a13/
[1] Abyzov A. N., “Zamknutost slabo regulyarnye modulei otnositelno pryamykh summ”, Izv. vyssh. uchebn. zaved. Matematika, 2003, no. 9, 3–5 | MR
[2] Abyzov A. N., “Slabo regulyarnye moduli nad polusovershennymi koltsami”, Chebyshevskii sbornik, 4:1 (2003), 4–9
[3] Abyzov A. N., “Slabo regulyarnye moduli”, Izv. vyssh. uchebn. zaved. Matematika, 2004, no. 3, 3–6
[4] Feis K., Algebra: koltsa, moduli i kategorii, t. 1, Mir, M., 1977
[5] Feis K., Algebra: koltsa, moduli i kategorii, t. 2, Mir, M., 1979
[6] Khakmi Kh. I., “Silno regulyarnye i slabo regulyarnye koltsa i moduli”, Izv. vyssh. uchebn. zaved. Matematika, 1994, no. 5, 60–65
[7] Hamza H., “$I_0$-rings and $I_0$-modules”, Math. J. Okayama Univ., 40 (1998), 91–97 | MR
[8] Nicholson W. K., “$I$-rings”, Trans. Amer. Math. Soc., 207 (1975), 361–373 | DOI | MR | Zbl
[9] Nicholson W. K., “Semiregular modules and rings”, Can. J. Math., 28:5 (1976), 1105–1120 | DOI | MR | Zbl
[10] Nicholson W. K., Yousif M. F., Quasi-Frobenius Rings, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[11] Tuganbaev A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl
[12] Tuganbaev A. A., “Semiregular, weakly regular, and $\pi$-regular rings”, J. Math. Sci., 109:3 (2002), 1509–1588 | DOI | MR | Zbl
[13] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl
[14] Xue W. M., “Semiregular modules and $F$-semiperfect modules”, Comm. Algebra, 23:3 (1995), 1035–1046 | DOI | MR | Zbl