Elementary equivalence of Chevalley groups over fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 29-77
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that (elementary) Chevalley groups $G_\pi(\Phi,K)$ and $G_{\pi'}(\Phi',K')$
(or $E_\pi (\Phi,K)$ and $E_{\pi'}(\Phi',K')$) over infinite fields $K$ and $K'$ of characteristic different from 2, with weight lattices $\Lambda$ and $\Lambda'$, respectively, are elementarily equivalent if and only if the root systems $\Phi$ and $\Phi'$ are isomorphic, the fields $K$ and $K'$ are elementarily equivalent, and the lattices $\Lambda$ and $\Lambda'$ coincide.
@article{FPM_2006_12_8_a1,
author = {E. I. Bunina},
title = {Elementary equivalence of {Chevalley} groups over fields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {29--77},
publisher = {mathdoc},
volume = {12},
number = {8},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a1/}
}
E. I. Bunina. Elementary equivalence of Chevalley groups over fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 29-77. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a1/