Elementary equivalence of Chevalley groups over fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 29-77

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that (elementary) Chevalley groups $G_\pi(\Phi,K)$ and $G_{\pi'}(\Phi',K')$ (or $E_\pi (\Phi,K)$ and $E_{\pi'}(\Phi',K')$) over infinite fields $K$ and $K'$ of characteristic different from 2, with weight lattices $\Lambda$ and $\Lambda'$, respectively, are elementarily equivalent if and only if the root systems $\Phi$ and $\Phi'$ are isomorphic, the fields $K$ and $K'$ are elementarily equivalent, and the lattices $\Lambda$ and $\Lambda'$ coincide.
@article{FPM_2006_12_8_a1,
     author = {E. I. Bunina},
     title = {Elementary equivalence of {Chevalley} groups over fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {29--77},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a1/}
}
TY  - JOUR
AU  - E. I. Bunina
TI  - Elementary equivalence of Chevalley groups over fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 29
EP  - 77
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a1/
LA  - ru
ID  - FPM_2006_12_8_a1
ER  - 
%0 Journal Article
%A E. I. Bunina
%T Elementary equivalence of Chevalley groups over fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 29-77
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a1/
%G ru
%F FPM_2006_12_8_a1
E. I. Bunina. Elementary equivalence of Chevalley groups over fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 29-77. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a1/