Recursion operator for the intrinsic generalized sine-Gordon equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 117-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the inverse and direct recursion operator for the intrinsic generalized sine-Gordon equation in any number $n>2$ of independent variables. Among the flows generated by the direct operator we identify a higher-dimensional analogue of the pmKdV equation.
@article{FPM_2006_12_7_a8,
     author = {M. Marvan and M. Pobo\v{r}il},
     title = {Recursion operator for the intrinsic generalized {sine-Gordon} equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a8/}
}
TY  - JOUR
AU  - M. Marvan
AU  - M. Pobořil
TI  - Recursion operator for the intrinsic generalized sine-Gordon equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 117
EP  - 128
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a8/
LA  - ru
ID  - FPM_2006_12_7_a8
ER  - 
%0 Journal Article
%A M. Marvan
%A M. Pobořil
%T Recursion operator for the intrinsic generalized sine-Gordon equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 117-128
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a8/
%G ru
%F FPM_2006_12_7_a8
M. Marvan; M. Pobořil. Recursion operator for the intrinsic generalized sine-Gordon equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 117-128. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a8/

[1] Aminov Yu. A., “O pogruzhenii oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, DAN SSSR, 236 (1977), 521–524 | MR | Zbl

[2] Baran Kh., Marvan M., “K odnoi gipoteze o nelokalnykh chlenakh operatorov rekursii”, Fundament. i prikl. mat., 12:7 (2006), 23–33 | MR

[3] Khorkova N. G., “Zakony sokhraneniya i nelokalnye simmetrii”, Mat. zametki, 44:1 (1988), 134–144 \language=0 | MR

[4] Barbosa J. L., Ferreira W., Tenenblat K., “Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds”, Ann. Global. Anal. Geom., 14 (1996), 381–401 | DOI | MR | Zbl

[5] Beals R., Tenenblat K., “An intrinsic generalization for the wave and sine-Gordon equations”, Differential Geometry, Pitman Monographs, 52, ed. B. Lawson et al., Longman, 1991, 25–46 | MR

[6] Boiti M., Léon J. J.-P., Pempinelli F., “Canonical and noncanonical recursion operators in multidimensions”, Stud. Appl. Math., 78 (1988), 1–19 | MR | Zbl

[7] Campos P. T., Tenenblat K., “Bäcklund transformations for a class of systems of differential equations”, Geom. Funct. Anal., 4:3 (1994), 270–287 | DOI | MR | Zbl

[8] Cieśliński J., Aminov Yu. A., “A geometric interpretation of the spectral problem for the generalized sine-Gordon system”, J. Phys. A, 34 (2001), L153–L159 | DOI | MR | Zbl

[9] Douglas J., “Solution of the inverse problem of the calculus of variations”, Trans. Amer. Math. Soc., 50 (1941), 71–128 | DOI | MR | Zbl

[10] Ferreira W., “On metrics of constant sectional curvature”, Mat. Contemp., 9 (1995), 91–110 | MR | Zbl

[11] Ferus D., Pedit F., “Isometric immersions of space forms and soliton theory”, Math. Ann., 305 (1996), 329–342 | DOI | MR | Zbl

[12] Fokas A. S., Santini P. M., “Recursion operators and bi-Hamiltonian structure in multidimensions. I”, Comm. Math. Phys., 115 (1988), 375–419 | DOI | MR | Zbl

[13] Fokas A. S., Santini P. M., “Recursion operators and bi-Hamiltonian structure in multidimensions. II”, Comm. Math. Phys., 116 (1988), 449–474 | DOI | MR | Zbl

[14] Gu C. H., Hu H. S., “Explicit solutions to the intrinsic generalization for the wave and sine-Gordon equations”, Lett. Math. Phys., 29 (1993), 1–11 | DOI | MR

[15] Guthrie G. A., “Recursion operators and non-local symmetries”, Proc. Roy. Soc. London Ser. A, 446, 1994, 107–114 | MR | Zbl

[16] Krasilshchik I. S., Vinogradov A. M., “Nonlocal symmetries and the theory of coverings: An addendum to A. M. Vinogradov's “Local symmetries and conservation laws””, Acta Appl. Math., 2 (1984), 79–96 | DOI | MR

[17] Krasilshchik I. S., Vinogradov A. M., “Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bäcklund transformations”, Acta Appl. Math., 15 (1989), 161–209 | DOI | MR

[18] Kumei S., “Invariance transformations, invariance group transformations, and invariance groups of the sine-Gordon equations”, J. Math. Phys., 16 (1975), 2461–2468 | DOI | MR

[19] Marvan M., “Another look on recursion operators”, Differential Geometry and Applications. Proc. Conf. Brno, 1995 (Brno: Masaryk University), 1996, 393–402 | MR | Zbl

[20] Marvan M., “Some local properties of Bäcklund relations”, Acta Appl. Math., 54 (1998), 1–25 | DOI | MR | Zbl

[21] Marvan M., “Scalar second-order evolution equations possessing an irreducible $\mathrm{sl}_2$-valued zero-curvature representation //”, J. Phys. A, 35 (2002), 9431–9439 | DOI | MR | Zbl

[22] Marvan M., Sergyeyev A., “Recursion operator for the Nizhnik–Veselov–Novikov equation”, J. Phys. A, 36 (2003), L87–L92 | DOI | MR | Zbl

[23] Olver P. J., “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18 (1977), 1212–1215 | DOI | MR | Zbl

[24] Sergyeyev A., “Why nonlocal recursion operators produce local symmetries: New results and applications”, J. Phys. A, 38 (2005), 3397–3407 | DOI | MR | Zbl

[25] Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Translations of Math. Monographs, 182, eds. I. S. Krasil'shchik , A. M. Vinogradov, Amer. Math. Soc., Providence, 1999

[26] Tenenblat K., “A note on solutions for the intrinsic generalized wave and sine-Gordon equation”, J. Math. Anal. Appl., 166 (1992), 288–301 | DOI | MR | Zbl

[27] Tenenblat K., Terng C. L., “A higher dimension generalization of the sine-Gordon equation and its Bäcklund transformation”, Bull. Amer. Math. Soc., 1 (1979), 589–593 | DOI | MR | Zbl

[28] Tenenblat K., Winternitz P., “On the symmetry groups of the intrinsic generalized wave and sine-Gordon equations”, J. Math. Phys., 34 (1993), 3527–3542 | DOI | MR | Zbl

[29] Terng C. L., “A higher dimension generalization of the sine-Gordon equation and its soliton theory”, Ann. Math., 111 (1980), 491–510 | DOI | MR | Zbl

[30] Terng C. L., “Soliton equations and differential geometry”, J. Differential Geom., 45 (1997), 407–445 | MR | Zbl

[31] Zakharov V. E., Konopelchenko B. G., “On the theory of recursion operator”, Comm. Math. Phys., 94 (1984), 483–509 | DOI | MR | Zbl

[32] Zhou Z. X., “Darboux transformations for the twisted $\mathrm{so}(p,q)$ system and local isometric immersions of space forms”, Inverse Problems, 14 (1998), 1353–1370 | DOI | MR | Zbl