Some classes of electromagnetic waves that admit parabolic helices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 79-92
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe classes of electromagnetic waves that admit the subgroups of the Poincaré group such that the subgroups contain parabolic helices. Representatives of some classes are constructed.
@article{FPM_2006_12_7_a5,
     author = {A. S. Ivanova and M. A. Parinov},
     title = {Some classes of electromagnetic waves that admit parabolic helices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--92},
     year = {2006},
     volume = {12},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/}
}
TY  - JOUR
AU  - A. S. Ivanova
AU  - M. A. Parinov
TI  - Some classes of electromagnetic waves that admit parabolic helices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 79
EP  - 92
VL  - 12
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/
LA  - ru
ID  - FPM_2006_12_7_a5
ER  - 
%0 Journal Article
%A A. S. Ivanova
%A M. A. Parinov
%T Some classes of electromagnetic waves that admit parabolic helices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 79-92
%V 12
%N 7
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/
%G ru
%F FPM_2006_12_7_a5
A. S. Ivanova; M. A. Parinov. Some classes of electromagnetic waves that admit parabolic helices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 79-92. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/

[1] Belko I. V., “Podgruppy gruppy Lorentsa–Puankare”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1971, no. 1, 5–13 | MR

[2] Ivanova A. S., “Gruppovaya klassifikatsiya elektromagnitnykh voln, dopuskayuschikh smeschenie po odnoi iz prostranstvennykh koordinat”, Nauch. tr. Iv. gos. un-ta. Matematika, 1999, no. 2, 50–62

[3] Ivanova A. S., “Gruppovaya klassifikatsiya elektromagnitnykh voln, dopuskayuschikh ellipticheskie vinty”, Mat. i ee pril., 2004, no. 1, 51–62 | MR

[4] Ivanova A. S., “Elektromagnitnye volny, dopuskayuschie translyatsii v izotropnom napravlenii”, Fundament. i prikl. mat., 10:1 (2004), 49–56 | MR | Zbl

[5] Landau L. D., Lifshits E. M., Teopiya polya, Nauka, M., 1967 | Zbl

[6] Parinov M. A., Prostranstva Einshteina–Maksvella i uravneniya Lorentsa, Izd-vo IvGU, Ivanovo, 2003

[7] Parinov M. A., “Klassy prostranstv Maksvella, dopuskayuschikh podgruppy gruppy Puankare”, Fundament. i prikl. mat., 10:1 (2004), 183–237 | MR | Zbl