Some classes of electromagnetic waves that admit parabolic helices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 79-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe classes of electromagnetic waves that admit the subgroups of the Poincaré group such that the subgroups contain parabolic helices. Representatives of some classes are constructed.
@article{FPM_2006_12_7_a5,
     author = {A. S. Ivanova and M. A. Parinov},
     title = {Some classes of electromagnetic waves that admit parabolic helices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/}
}
TY  - JOUR
AU  - A. S. Ivanova
AU  - M. A. Parinov
TI  - Some classes of electromagnetic waves that admit parabolic helices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 79
EP  - 92
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/
LA  - ru
ID  - FPM_2006_12_7_a5
ER  - 
%0 Journal Article
%A A. S. Ivanova
%A M. A. Parinov
%T Some classes of electromagnetic waves that admit parabolic helices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 79-92
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/
%G ru
%F FPM_2006_12_7_a5
A. S. Ivanova; M. A. Parinov. Some classes of electromagnetic waves that admit parabolic helices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 79-92. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a5/

[1] Belko I. V., “Podgruppy gruppy Lorentsa–Puankare”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1971, no. 1, 5–13 | MR

[2] Ivanova A. S., “Gruppovaya klassifikatsiya elektromagnitnykh voln, dopuskayuschikh smeschenie po odnoi iz prostranstvennykh koordinat”, Nauch. tr. Iv. gos. un-ta. Matematika, 1999, no. 2, 50–62

[3] Ivanova A. S., “Gruppovaya klassifikatsiya elektromagnitnykh voln, dopuskayuschikh ellipticheskie vinty”, Mat. i ee pril., 2004, no. 1, 51–62 | MR

[4] Ivanova A. S., “Elektromagnitnye volny, dopuskayuschie translyatsii v izotropnom napravlenii”, Fundament. i prikl. mat., 10:1 (2004), 49–56 | MR | Zbl

[5] Landau L. D., Lifshits E. M., Teopiya polya, Nauka, M., 1967 | Zbl

[6] Parinov M. A., Prostranstva Einshteina–Maksvella i uravneniya Lorentsa, Izd-vo IvGU, Ivanovo, 2003

[7] Parinov M. A., “Klassy prostranstv Maksvella, dopuskayuschikh podgruppy gruppy Puankare”, Fundament. i prikl. mat., 10:1 (2004), 183–237 | MR | Zbl