On the characteristic Lie algebras for equations $u_{xy}=f(u,u_x)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 65-78
Voir la notice de l'article provenant de la source Math-Net.Ru
A new approach to classification of integrable nonlinear equations is proposed. The method is based on description of the structure of the characteristic algebra. A basis of the characteristic algebra is constructed for the $\mathrm{sinh}$-Gordon equation.
@article{FPM_2006_12_7_a4,
author = {A. V. Zhiber and R. D. Murtazina},
title = {On the characteristic {Lie} algebras for equations $u_{xy}=f(u,u_x)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {65--78},
publisher = {mathdoc},
volume = {12},
number = {7},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a4/}
}
TY - JOUR
AU - A. V. Zhiber
AU - R. D. Murtazina
TI - On the characteristic Lie algebras for equations $u_{xy}=f(u,u_x)$
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2006
SP - 65
EP - 78
VL - 12
IS - 7
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a4/
LA - ru
ID - FPM_2006_12_7_a4
ER -
A. V. Zhiber; R. D. Murtazina. On the characteristic Lie algebras for equations $u_{xy}=f(u,u_x)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 65-78. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a4/