Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_7_a14, author = {A. Sergyeyev}, title = {Zero-curvature representation for a~new fifth-order integrable system}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {227--229}, publisher = {mathdoc}, volume = {12}, number = {7}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a14/} }
A. Sergyeyev. Zero-curvature representation for a~new fifth-order integrable system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 227-229. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a14/
[1] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[2] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR
[3] Mikhailov A. V., Shabat A. B., Sokolov V. V., “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, Naukova dumka, Kiev, 1990, 213–279 | MR
[4] Mikhailov A. V., Shabat A. B., Yamilov R. I., “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, Uspekhi mat. nauk, 42:4 (1987), 3–53 | MR
[5] Nyuell A., Solitony v matematike i fizike, Mir, M., 1989 | MR
[6] Takhtadzhyan L. A, Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[7] Estabrook F. B., Wahlquist H. D., “Prolongation structures of nonlinear evolution equations. II”, J. Math. Phys., 17:7 (1976), 1293–1297 | DOI | MR | Zbl
[8] Kaup D. J., “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6q\psi_x+6r\psi=\lambda\psi$”, Stud. Appl. Math., 62 (1980), 189–216 | MR | Zbl
[9] Marvan M., “On zero curvature representations of partial differential equations”, Differential Geometry and Its Applications, (Proc. Conf. Opava, Czechoslovakia, Aug. 24–28, 1992), Silesian University, Opava, 1993, 103–122 http://www.emis.de/proceedings/5ICDGA/ | MR | Zbl
[10] Marvan M., “A direct procedure to compute zero-curvature representations. The case $\mathfrak{sl}_2$”, Secondary Calculus and Cohomological Physics, (Proc. Int. Conf. Moscow, 1997), 1998 http://www.emis.de/proceedings/SCCP97 | MR
[11] Mikhailov A. V., Novikov V. S., “Perturbative symmetry approach”, J. Phys. A, 35:22 (2002), 4775–4790 | DOI | MR | Zbl
[12] Mikhailov A. V., Novikov V. S., Wang J. P., , 2006 arXiv:org/nlin.SI/0601046
[13] Mikhailov A. V., Yamilov R. I., “Towards classification of $(2+1)$-dimensional integrable equations. Integrability conditions. I”, J. Phys. A, 31:31 (1998), 6707–6715 | DOI | MR | Zbl
[14] Wahlquist H. D., Estabrook F. B., “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | Zbl