Zero-curvature representation for a~new fifth-order integrable system
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 227-229

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a zero curvature representation for one of the new integrable systems found by Mikhailov, Novikov, and Wang.
@article{FPM_2006_12_7_a14,
     author = {A. Sergyeyev},
     title = {Zero-curvature representation for a~new fifth-order integrable system},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {227--229},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a14/}
}
TY  - JOUR
AU  - A. Sergyeyev
TI  - Zero-curvature representation for a~new fifth-order integrable system
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 227
EP  - 229
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a14/
LA  - ru
ID  - FPM_2006_12_7_a14
ER  - 
%0 Journal Article
%A A. Sergyeyev
%T Zero-curvature representation for a~new fifth-order integrable system
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 227-229
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a14/
%G ru
%F FPM_2006_12_7_a14
A. Sergyeyev. Zero-curvature representation for a~new fifth-order integrable system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 227-229. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a14/