On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 137-155
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotics as $\alpha\to0+$ of the number of real eigenvalues $\lambda_n(\alpha)$ of the problem $y''(x)+\lambda D_{0}^{\alpha}y(x)=0$, $0$, $y(0)=y(1)=0$, is found. The minimization of real eigenvalues was carried out. It is proved that $\lim\limits_{\alpha\to0+}\lambda_n(\alpha)=(\pi n)^2$.
@article{FPM_2006_12_6_a8,
author = {A. Yu. Popov},
title = {On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {137--155},
publisher = {mathdoc},
volume = {12},
number = {6},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/}
}
TY - JOUR AU - A. Yu. Popov TI - On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 137 EP - 155 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/ LA - ru ID - FPM_2006_12_6_a8 ER -
%0 Journal Article %A A. Yu. Popov %T On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 137-155 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/ %G ru %F FPM_2006_12_6_a8
A. Yu. Popov. On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 137-155. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/