On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 137-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics as $\alpha\to0+$ of the number of real eigenvalues $\lambda_n(\alpha)$ of the problem $y''(x)+\lambda D_{0}^{\alpha}y(x)=0$, $0$, $y(0)=y(1)=0$, is found. The minimization of real eigenvalues was carried out. It is proved that $\lim\limits_{\alpha\to0+}\lambda_n(\alpha)=(\pi n)^2$.
@article{FPM_2006_12_6_a8,
     author = {A. Yu. Popov},
     title = {On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 137
EP  - 155
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/
LA  - ru
ID  - FPM_2006_12_6_a8
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 137-155
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/
%G ru
%F FPM_2006_12_6_a8
A. Yu. Popov. On the number of real eigenvalues of a~certain boundary-value problem for a~second-order equation with fractional derivative. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 137-155. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a8/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, 3, Nauka, M., 1967 | MR | Zbl

[3] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[4] Dzhrbashyan M. M., “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka tipa Shturma–Liuvillya”, Izv. AN Arm. SSR. Ser. mat., 5:2 (1970), 71–96 | MR | Zbl

[5] Kuptsov L. P., “Gamma-funktsiya”, Matematicheskaya entsiklopediya, 1, Sov. entsiklopediya, M., 1977, 866–869

[6] Nakhushev A. M., “Zadacha Shturma–Liuvillya dlya differentsialnogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, DAN SSSR, 234:2 (1977), 308–311 | MR | Zbl

[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[8] Pskhu A. V., “O veschestvennykh nulyakh funktsii tipa Mittag-Lefflera”, Mat. zametki, 77:4 (2005), 592–599 | MR | Zbl

[9] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, 1987 | MR

[10] Sedletskii A. M., “Neasimptoticheskie svoistva kornei funktsii tipa Mittag-Lefflera”, Mat. zametki, 75:3 (2004), 405–420 | MR

[11] Ostrovskii I. V., Peresyolkova I. N., “Non-asymptotic results on distribution of zeros of the function $E_{\rho}(z,\mu)$”, Anal. Math., 23 (1997), 283–296 | DOI | MR | Zbl