Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_6_a5, author = {P. A. Zakharchenko and E. V. Radkevich}, title = {On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {85--98}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/} }
TY - JOUR AU - P. A. Zakharchenko AU - E. V. Radkevich TI - On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 85 EP - 98 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/ LA - ru ID - FPM_2006_12_6_a5 ER -
%0 Journal Article %A P. A. Zakharchenko %A E. V. Radkevich %T On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 85-98 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/ %G ru %F FPM_2006_12_6_a5
P. A. Zakharchenko; E. V. Radkevich. On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 85-98. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/
[1] Volevich L. R., Gindikin S G., Smeshannaya zadacha dlya differentsialnykh uravnenii v chastnykh proizvodnykh s kvaziodnorodnoi starshei chastyu, Editorial URSS, M., 1999
[2] Volevich L. R., Radkevich E. V., “Ustoichivye puchki giperbolicheskikh polinomov i zadachi Koshi dlya giperbolicheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Tr. MMO, 65 (2004), 69–113 | MR | Zbl
[3] Godunov S. G., Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami, Izd-vo NGU, Novosibirsk, 1994 | MR | Zbl
[4] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Univer. ser., 4, Nauch. kn., Novosibirsk, 1998
[5] Zakharchenko P. A., Radkevich E. V., “O svoistvakh predstavleniya uravneniya Fokkera–Planka v bazise funktsii Ermita”, Dokl. RAN, 395:1 (2004), 36–39 | MR | Zbl
[6] Levermore C. D., “Moment closure hierarchies for kinetic theories”, J. Statist. Phys., 83 (1996), 1021–1065 | DOI | MR | Zbl
[7] Müller I., Ruggeri T., Extended Thermodynamics, Springer, 1993 | MR
[8] Sakamoto R., “Mixed problems for hyperbolic equations. I: Energy inequalities”, J. Math. Kyoto Univ., 10 (1970), 349–373 | MR | Zbl
[9] Sakamoto R., “Mixed problems for hyperbolic equations. II: Existence theorems with zero initial datas and energy inequalities with initial datas”, J. Math. Kyoto Univ., 10 (1970), 403–417 | MR | Zbl