On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 85-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the well-posedness of the mixed problem for hyperbolic equations with constant coefficients and characteristics of variable multiplicity. The authors distinguish a class of higher-order hyperbolic operators with constant coefficients and characteristics of variable multiplicity for which a generalization of the Sakamoto $L_2$-well-posedness of the mixed problem is obtained.
@article{FPM_2006_12_6_a5,
     author = {P. A. Zakharchenko and E. V. Radkevich},
     title = {On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--98},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/}
}
TY  - JOUR
AU  - P. A. Zakharchenko
AU  - E. V. Radkevich
TI  - On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 85
EP  - 98
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/
LA  - ru
ID  - FPM_2006_12_6_a5
ER  - 
%0 Journal Article
%A P. A. Zakharchenko
%A E. V. Radkevich
%T On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 85-98
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/
%G ru
%F FPM_2006_12_6_a5
P. A. Zakharchenko; E. V. Radkevich. On the well-posedness of the mixed problem for hyperbolic operators with characteristics of variable multiplicity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 85-98. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a5/

[1] Volevich L. R., Gindikin S G., Smeshannaya zadacha dlya differentsialnykh uravnenii v chastnykh proizvodnykh s kvaziodnorodnoi starshei chastyu, Editorial URSS, M., 1999

[2] Volevich L. R., Radkevich E. V., “Ustoichivye puchki giperbolicheskikh polinomov i zadachi Koshi dlya giperbolicheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Tr. MMO, 65 (2004), 69–113 | MR | Zbl

[3] Godunov S. G., Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami, Izd-vo NGU, Novosibirsk, 1994 | MR | Zbl

[4] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Univer. ser., 4, Nauch. kn., Novosibirsk, 1998

[5] Zakharchenko P. A., Radkevich E. V., “O svoistvakh predstavleniya uravneniya Fokkera–Planka v bazise funktsii Ermita”, Dokl. RAN, 395:1 (2004), 36–39 | MR | Zbl

[6] Levermore C. D., “Moment closure hierarchies for kinetic theories”, J. Statist. Phys., 83 (1996), 1021–1065 | DOI | MR | Zbl

[7] Müller I., Ruggeri T., Extended Thermodynamics, Springer, 1993 | MR

[8] Sakamoto R., “Mixed problems for hyperbolic equations. I: Energy inequalities”, J. Math. Kyoto Univ., 10 (1970), 349–373 | MR | Zbl

[9] Sakamoto R., “Mixed problems for hyperbolic equations. II: Existence theorems with zero initial datas and energy inequalities with initial datas”, J. Math. Kyoto Univ., 10 (1970), 403–417 | MR | Zbl